Skip to main content
Log in

Pathological Upper Limb Synergies of Patients with Poststroke Hemiparesis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review presents current data on possible mechanisms forming synergies in health, particularly at the cortical level. The mechanisms of formation of pathological synergies, taking account of the anatomical and physiological characteristics of the upper limbs and the hypothesis, that synergistic patterns are transformed in patients with spastic hemiparesis are discussed. Current views of the pathophysiological bases of the formation of pathological synergies based on neuroimaging and neurophysiological study data are presented, along with a method for noninvasive stimulation of the brain. The question of the correction and transformation of pathological synergies in rehabilitation practice is discussed. Particular attention is paid to clinical and instrumented evaluation of synergies and the use of validated clinical scales and instrumented methods such as video movement analysis, electromyography, magnetic and contactless tracking systems, and virtual reality technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. J., Lichter, M. D., Krepkovich, E. T., et al., “Assessing upper extremity motor function in practice of virtual activities of daily living,” IEEE Trans. Neural Syst. Rehabil. Eng., 23, No. 2, 287–96 (2015).

    PubMed  Google Scholar 

  • Aleksandrov, Yu. I., Psychophysiology: Textbook, Piter, St. Petersburg (2012).

    Google Scholar 

  • Alexandrov, A., Frolov, A., and Massion, J., “Axial synergies during human upper trunk bending,” Exp. Brain Res., 118, 210–220 (1998).

    CAS  PubMed  Google Scholar 

  • Alt Murphy, M. A. and Hager, C. K., “Kinematic analysis of the upper extremity after stroke – how far have we reached and what have we grasped?” Phys. Ther. Rev., 20, 137–155 (2015).

    Google Scholar 

  • Andriacchi, T. P., Ogle, J. A., and Galante, J. O., “Walking speed as a basis for normal and abnormal gait measurements,” J. Biomech., 10, No. 4, 261–268 (1977).

    CAS  PubMed  Google Scholar 

  • Artemiadis, P. and Kyriakopoulos, K., “Teleoperation of a robot manipulator using EMG signals and a position tracker,” in: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Edmonton, August 2005, pp. 1003–1008 (2005).

  • Asanuma, H. and Rosen, I., “Spread of mono- and polysynaptic connections within cat’s motor cortex,” Exp. Brain Res., 16, 507–520 (1973).

    CAS  PubMed  Google Scholar 

  • Beck, S. and Hallett, M., “Surround inhibition in the motor system,” Exp. Brain Res., 210, 165–72 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Beer, R. F., Dewald, J. P., and Rymer, W. Z., “Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics,” Exp. Brain Res., 131, 305–319 (2000).

    CAS  PubMed  Google Scholar 

  • Bernstein, N. A., The Construction of Movements, Medgiz, Moscow (1947).

    Google Scholar 

  • Bernstein, N. A., The Physiology of Movements and Activity, Nauka, Moscow (1990).

    Google Scholar 

  • Bernstein, N. A., The Coordination and Regulation of Movements, Pergamon, London, Oxford (1967).

    Google Scholar 

  • Biryukova, E. and Bril, B., “Biomechanical analysis of tool use: a return to Bernstein’s tradition,” Zeitschrift für Psychologie, 220, No. 1, 53–54 (2012).

    Google Scholar 

  • Biryukova, E. V., Frolov, A. A., Robi-Brami, A., and Kulikov, M. A., “Analysis of kinematic synergies in humans in health and various types of motor impairments,” Ross. Zh. Biomekhan., 3, No. 2, 13–14 (1999).

    Google Scholar 

  • Biryukova, E. V., Pavlova, O. G., Kurganskaya, M. E., et al., “Recovery of motor functions of the arm using a hand exoskeleton controlled by a brain-computer interface. Case report of a patient with widespread brain damage,” Fiziol. Cheloveka, 42, No. 1, 19–30 (2016).

    CAS  PubMed  Google Scholar 

  • Bizzi, E. and Cheung, V. C., “The neural origin of muscle synergies,” Front. Comput. Neurosci., 7, 51 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Bizzi, E., Mussa-Ivaldi, F. A., and Giszter, S., “Computations underlying the execution of movement: a biological perspective,” Science, 253, No. 5017, 287–291 (1991).

    CAS  PubMed  Google Scholar 

  • Bradnam, L. V., Stinear, C. M., Barber, P. A., and Byblow, W. D., “Contralesional hemisphere control of the proximal paretic upper limb following stroke,” Cereb. Cortex, 22, No. 11, 2662–2671 (2012).

    PubMed  Google Scholar 

  • Breteler, K., Simura, K. J., and Flanders, M., “Timing of muscle activation in a hand movement sequence,” Cereb. Cortex, 17, No. 4, 803–815 (2007).

    Google Scholar 

  • Brown, A. R. and Teskey, G. C., “Motor cortex is functionally organized as a set of spatially distinct representations for complex movements,” J. Neurosci., 34, 13574–13585 (2014).

    CAS  PubMed  Google Scholar 

  • Brunnstrom, S., Movement Therapy in Hemiplegia: A Neurophysiological Approach. Facts and Comparisons, Harper and Row, New York (1970).

    Google Scholar 

  • Cheung, V. C. K., d’Avella, A., Tresch, M. C., and Bizzi, E., “Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors,” J. Neurosci., 25, 6419–6434 (2005).

    CAS  PubMed  Google Scholar 

  • Cheung, V. C. K., Turolla, A., Agostini, M., et al., “Muscle synergy patterns as physiological markers of motor cortical damage,” Proc. Natl. Acad. Sci. USA, 109, No. 36, 14652–14656 (2012).

    CAS  PubMed  Google Scholar 

  • Cirstea, M. C., Mitnitski, A. B., Feldman, A. G., and Levin, M. F., “Interjoint coordination dynamics during reaching in stroke,” Exp. Brain. Res., 151, No. 3, 289–300 (2003).

    CAS  PubMed  Google Scholar 

  • Clark, D. J., Ting, L. H., Zajac, F. E., et al., “Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke,” J. Neurophysiol., 103, 844–857 (2010).

    PubMed  Google Scholar 

  • Corneal, S. F., Butler, A. J., and Wolf, S. L., “Intra- and intersubject reliability of abductor pollicis brevis muscle motor map characteristics with transcranial magnetic stimulation,” Arch. Phys. Med. Rehabil., 86, No. 8, 1670–1675 (2005).

    PubMed  PubMed Central  Google Scholar 

  • d’Avella, A. and Lacquaniti, F., “Control of reaching movements by muscle synergy combinations,” Front. Comput. Neurosci., 7, 42 (2013).

    PubMed  PubMed Central  Google Scholar 

  • d’Avella, A., Saltiel, P., and Bizzi, E., “Combinations of muscle synergies in the construction of a natural motor behavior,” Nat. Neurosci., 6, No. 3, 300–308 (2003).

    PubMed  Google Scholar 

  • De Oliveira, R., Cacho, E. W., and Borges, G., “Improvements in the upper limb of hemiparetic patients after reaching movements training,” Int. J. Rehabil. Res., 30, No. 1, 67–70 (2007).

    PubMed  Google Scholar 

  • Desmurget, M., Richard, N., Harquel, S., et al., “Neural representations of ethologically relevant hand/mouth synergies in the human precentral gyrus,” Proc. Natl. Acad. Sci. USA, 111, No. 15, 5718–5722 (2014).

    CAS  PubMed  Google Scholar 

  • Dewald, J. P. A., Pope, P. S., Given, J. D., et al., “Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects,” Brain, 118, 495–510 (1995).

    PubMed  Google Scholar 

  • Dewald, J. P. and Beer, R. F., “Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis,” Muscle Nerve, 24, No. 2, 273–283 (1995).

    Google Scholar 

  • Dewald, J. P., Sheshadri, V., Dawson, M. L., and Beer, R. F., “Upper-limb discoordination in hemiparetic stroke: implications for neurorehabilitation,” Top. Stroke. Rehabil., 8, 1–12 (2001).

    CAS  PubMed  Google Scholar 

  • Duncan, P. W., Propst, M., and Nelson, S. G., “Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident,” Phys. Ther., 63, 1606–1610 (1983).

    CAS  PubMed  Google Scholar 

  • Espadaler, J., Rogić, M., Deletis, V., et al., “Representation of cricothyroid muscles at the primary motor cortex (M1) in healthy subjects, mapped by navigated transcranial magnetic stimulation (nTMS),” Clin. Neurophysiol., 123, 2205–2211 (2012).

    PubMed  Google Scholar 

  • Ferbert, A., Caramia, D., Priori, A., et al., “Cortical projection to erector spinae muscles in man as assessed by focal transcranial magnetic stimulation,” Electroencephalogr. Clin. Neurophysiol., 85, 382–387 (1992).

    CAS  PubMed  Google Scholar 

  • Ferrigno, G. and Pedotti, A., “Elite: a digital dedicated hardware system for movement analysis via real-time TV signal processing,” IEEE Trans. Biomed. Eng., 32, No. 11, 943–950 (1985).

    CAS  PubMed  Google Scholar 

  • Flash, T. and Hogan, N., “The coordination of arm movements: an experimentally confirmed mathematical model,” J. Neurosci., 5, No. 7, 1688–1703 (1985).

    CAS  PubMed  Google Scholar 

  • Fortier, P. A., Smith, A. M., and Kalaska, J. F., “Comparison of cerebellar and motor cortex activity during reaching: directional tuning and response variability,” J. Neurophysiol., 69, 1136–1149 (1993).

    CAS  PubMed  Google Scholar 

  • Frolov, A. A., Mokienko, O. A., Lyukmanov, R. Kh., et al., “Preliminary results of a controlled study of the effectiveness of IMK exoskeleton technology in poststroke arm paresis,” Vestn. Ross. Gos. Med. Univ., No. 2, 17–25 (2016).

  • Fugl-Meyer, A. R., Jaasko, L., Leyman, I., et al., “The post-stroke hemiplegic patient,” Scand. J. Rehabil. Med., 7, 13–31 (1975).

    CAS  PubMed  Google Scholar 

  • Fujiwara, T., Sonoda, S., Okajima, Y., and Chino, N., “The relationships between trunk function and the findings of transcranial magnetic stimulation among patients with stroke,” J. Rehabil. Med., 33, 249–255 (2001).

    CAS  PubMed  Google Scholar 

  • Gabiccini, M., Stillfried, G., Marino, H., and Bianchi, M., “A data-driven kinematic model of the human hand with soft-tissue artifact compensation mechanism for grasp synergy analysis,” in: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 3738–3745 (2013).

  • García-Cossio, E., Broetz, D., Birbaumer, N., and Ramos-Murguialday, A., “Cortex integrity relevance in muscle synergies in severe chronic stroke,” Front Hum. Neurosci., 8, 744 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Georgopoulos, A. P., “Cell directional spread determines accuracy, precision, and length of the neuronal population vector,” Exp. Brain Res., 232, 2391–2405 (2014).

    PubMed  Google Scholar 

  • Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., and Massey, J. T., “On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex,” J. Neurosci., 2, 1527–1537 (1982).

    CAS  PubMed  Google Scholar 

  • Gerachshenko, T., Rymer, W. Z., and Stinear, J. W., “Abnormal corticomotor excitability assessed in biceps brachii preceding pronator contraction post-stroke,” Clin. Neurophysiol., 119, 683–692 (2008).

    PubMed  Google Scholar 

  • Gomi, H. and Kawato, M., “Equilibrium-point control hypothesis examined by measuring arm stiffness during multijoint movement,” Science, 272, 117–120 (1996).

    CAS  PubMed  Google Scholar 

  • Gowland, C., Stratford, P. W., Ward, M., et al., “Measuring physical impairment and disability with the Chedoke–McMaster Stroke Assessment,” Stroke, 24, No. 1, 58–63 (1993).

    CAS  PubMed  Google Scholar 

  • Graziano, M. S., “Ethological action maps: A paradigm shift for the motor cortex,” Trends Cogn. Sci. 20, No. 2, 121–132 (2016).

    PubMed  Google Scholar 

  • Graziano, M. S., Aflalo, T. N. S., and Cooke, D. F., “Arm movements evoked by electrical stimulation in the motor cortex of monkeys,” J. Neurophysiol., 94, No. 6, 4209–4223 (2005).

    PubMed  Google Scholar 

  • Graziano, M. S., Taylor, C. S. R., and Moore, T., “Complex movements evoked by microstimulation of precentral cortex,” Neuron, 34, 841–851 (2002).

    CAS  PubMed  Google Scholar 

  • Gurfinkel’, V. S., Kots, Ya. M., and Shik, M. L., Regulation of Posture in Humans, Nauka, Moscow (1965).

    Google Scholar 

  • Hamdy, S. and Rothwell, J. C., “Gut feelings about recovery after stroke: the organization and reorganization of human swallowing motor cortex,” Trends Neurosci., 21, 278–282 (1998).

    CAS  PubMed  Google Scholar 

  • Hirashima, M. and Oya, T., “How does the brain solve muscle redundancy? Filling the gap between optimization and muscle synergy hypotheses,” Neurosci. Res., 104, 80–87 (2016).

    PubMed  Google Scholar 

  • Huntley, G. W. and Jones, E. G., “Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study,” J. Neurophysiol., 66, 390–413 (1991).

    CAS  PubMed  Google Scholar 

  • Inouye, J. M. and Valero-Cuevas, F. J., “Muscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumption,” PLoS Comput. Biol., 12, No. 2, e1004737 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Ioffe, M. E., “Cerebral mechanisms of the formation of new movements in learning: evolution of classical concepts,” Zh. Vyssh. Nerv. Deyat., 53, No. 1, 5–21 (2003).

    CAS  Google Scholar 

  • Ivanenko, Y. P., Poppele, R. E., and Lacquaniti, E., “Five basic muscle activation patterns account for muscle activity during human locomotion,” J. Physiol., 556, 267–282 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacyna, L. S., “Process and progress: John Hughlings Jackson’s philosophy of science,” Brain, 134, 3121–3126 (2011).

    PubMed  Google Scholar 

  • Kandel, E. R., Schwartz, J. H., and Jessell, Th. M., Principles of Neural Science, MCGraw-Hill, New York (2000).

    Google Scholar 

  • Knutsson, E. and Martensson, A., “Dynamic motor capacity in spastic paresis and its relation to prime mover dysfunction, spastic reflexes and antagonist co-activation,” Scand. J. Rehabil. Med., 12, No. 3, 93–106 (1980).

    CAS  PubMed  Google Scholar 

  • Landau, W. M., “Spasticity: what is it? What is it not?” in Spasticity: Disordered Motor Control, Feldman, R. G. et al., (eds.), Year Book Medical Publishers, Chicago (1980), pp. 17–24.

    Google Scholar 

  • Lang, C. E. and Schieber, M. H., “Differential impairment of individuated finger movements in humans after damage to the motor cortex or the corticospinal tract,” J. Neurophysiol., 90, No. 2, 1160–1170 (2003).

    PubMed  Google Scholar 

  • Lang, C. E. and Schieber, M. H., “Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract,” J. Neurophysiol., 91, No. 4, 1722–1733 (2004).

    PubMed  Google Scholar 

  • Latash, M. L., “Motor synergies and the equilibrium point hypothesis,” Motor Control, 14, 294–322 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Latash, M. L., Scholz, J. P., and Schoner, G., “Toward a new theory of motor synergies,” Motor Control, 11, 276–308 (2007).

    PubMed  Google Scholar 

  • Lee, S. W., Triandafilou, K., Lock, B. A., and Kamper, D. G., “Impairment in task-specific modulation of muscle coordination correlates with the severity of hand impairment following stroke,” PLoS One, 8, e68745 (2013).

    Google Scholar 

  • Marconi, B., Pecchioli, C., Koch, G., and Caltagirone, C., “Functional overlap between hand and forearm motor cortical representations during motor cognitive tasks,” Clin. Neurophysiol., 118, 1767–1775 (2007).

    PubMed  Google Scholar 

  • McKiernan, B. J., Marcario, J. K., Karrer, J. H., and Cheney, P. D., “Correlations between corticomotoneuronal (CM) cell postspike effects and cell-target muscle covariation,” J. Neurophysiol., 83, 99–115 (2000).

    CAS  PubMed  Google Scholar 

  • McMorland, A. J. C., Runnalls, K. D., and Byblow, W. D., “A neuroanatomical framework for upper limb synergies after stroke,” Front. Hum. Neurosci., 9, 82 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Melgari, J., Pasqualetti, P., Pauri, F., and Rossini, P. M., “Muscles in ‘concert’: study of primary motor cortex upper limb functional topography,” PLoS One, 3, No. 8, e3069 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Montgomery, L. R., Herbert, W. J., and Buford, J. A., “Recruitment of ipsilateral and contralateral upper limb muscles following stimulation of the cortical motor areas in the monkey,” Exp. Brain Res., 230, No. 2, 153–164 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muellbacher, W., Artner, C., and Mamoli, B., “The role of the intact hemisphere in recovery of midline muscles after recent mono-hemispheric stroke,” J. Neurol., 246, 250–256 (1999).

    CAS  PubMed  Google Scholar 

  • Nazarpour, K., Barnard, A., and Jackson, A., “Flexible cortical control of task-specific muscle synergies,” J. Neurosci., 32, No. 36, 12349–12360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neilson, P. D. and Neilson, M. D., “On theory of motor synergies,” Hum. Mov. Sci., 29, 655–683 (2010).

    PubMed  Google Scholar 

  • Novojilova, A. P. and Babmindra, V. P., “Intracortical horizontal connections of neurons in cat and monkey motor cortex,” J. Neurosci. Res., 3, 389–396 (1978).

    CAS  PubMed  Google Scholar 

  • Overduin, S. A., Avella, A., Carmena, J. M., and Bizzi, E., “ microstimulation activates a handful of muscle synergies,” Neuron, 76, 1071–1077 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Overduin, S. A., d’Avella, A., Roh, J., Carmena, J. M., and Bizzi, E., “Representation of muscle synergies in the primate brain,” J. Neurosci., 35, 12615–12624 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer, E. and Ashby, P., “Corticospinal projections to upper limb motoneurones in humans,” J. Physiol., 448, 397–412 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker, V. M., Wade, D. T., and Langton, H. R., “Loss of arm function after stroke: measurement, frequency, and recovery,” Int. Rehabil. Med., 8, No. 2, 69–73 (1986).

    CAS  PubMed  Google Scholar 

  • Penfield, W. and Boldrey, E., “Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation,” Brain, 60, 389–443 (1937).

    Google Scholar 

  • Pfister, A., West, A. M., Bronner, S., and Noah, J. A., “Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis,” J. Med. Eng. Technol., 38, No. 5, 274–280 (2014).

    PubMed  Google Scholar 

  • Piradov, M. A., “Intensive therapy of stroke: a view of the problem,” Ann. Klin. Eksperim. Nevrol., 1, No. 1, 17–22 (2007).

  • Piradov, M. A., Suslina, Z. A., and Tanashyan, M. M., “Principles of the treatment of acute ischemic cerebrovascular accidents,” in: Angioneurology. A Monograph, Moscow (2005), pp. 206–215.

  • Platonov, A. K., Frolov, A. A., Biryukova, E. V., et al., “Methods for a human arm biomechatronic trainer,” Preprints from the Keldysh Institute of Applied Mathematics, 82, 1–40 (2012).

    Google Scholar 

  • Rammer, J. R., Krzak, J. J., Riedel, S. A., and Harris, G. F., “Evaluation of upper extremity movement characteristics during standardized pediatric functional assessment with a Kinect®-based markerless motion analysis system,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 2014, 2525–2528 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Rathelot, J.-A. and Strick, P. L., “Muscle representation in the macaque motor cortex: an anatomical perspective,” Proc. Natl. Acad. Sci. USA, 103, 8257–8262 (2006).

    CAS  PubMed  Google Scholar 

  • Roh, J., Rymer, W. Z., and Beer, R. F., “Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment,” Front Hum. Neurosci., 9, 6 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Santello, M. and Lang, C. E., “Are movement disorders and sensorimotor injuries pathologic synergies? When normal multi-joint movement synergies become pathologic,” Front Hum. Neurosci., 8, 1050 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Santello, M., Baud-Bovy, G., and Jorntell, H., “Neural bases of hand synergies,” Front. Comput. Neurosci., 7, 23 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Santello, M., Flanders, M., and Soechting, J. F., “Postural hand synergies for tool use,” J. Neurosci., 18, 10105–10115 (1998).

    CAS  PubMed  Google Scholar 

  • Schieber, M. H., “Constraints on somatotopic organization in the primary motor cortex,” J. Neurophysiol., 86, 2125–2143 (2001).

    CAS  PubMed  Google Scholar 

  • Schwerin, S., Dewald, J. P. A., Haztl, M., et al., “Ipsilateral versus contralateral cortical motor projections to a shoulder adductor in chronic hemiparetic stroke: implications for the expression of arm synergies,” Exp. Brain Res., 185, 509–519 (2008).

    PubMed  Google Scholar 

  • Smith, R. J., Tenore, F., Huberdeau, D., et al., “Continuous decoding of finger position from surface EMG signals for the control of powered prostheses,” in: 30th Ann. Int. Conf. of the IEEE Engineering in Medicine and Biology Society, EMBS, Vancouver, (2008), pp. 197–200.

  • Sohn, Y. H. and Hallett, M., “Surround inhibition in human motor system,” Exp. Brain Res., 158, 397–404 (2004).

    PubMed  Google Scholar 

  • Spoor, C. W. and Veldpaus, F. E., “Rigid body motion calculated from spatial co-ordinates of markers,” J. Biomech., 13, No. 4, 391–393 (1980).

    CAS  PubMed  Google Scholar 

  • Springer, S. and Yogev Seligmann, G., “Validity of the Kinect for gait assessment: A focused review,” Sensors (Basel), 16, No. 2 (2016).

    PubMed  Google Scholar 

  • Strbac, M., Kočović, S., Marković, M., and Popović, D. B., “Microsoft Kinect-based artificial perception system for control of functional electrical stimulation assisted grasping,” Biomed. Res. Int., 2014, 740469 (2014).

  • Subramanian, S. K., Yamanaka, J., Chilingaryan, G., and Levin, M. F., “Validity of movement pattern kinematics as measures of arm motor impairment poststroke,” Stroke, 41, No. 10, 2303–2308 (2010).

    PubMed  Google Scholar 

  • Suslina, Z. A., Illarioshkin, S. N., and Piradov, M. A., “Neurology and neuroscience: prognosis for development,” Ann. Klin. Eksperim. Nevrol., 1, No. 1, 5–9 (2007).

  • Tessitore, G., Sinigaglia, C., and Prevete, R., “Hierarchical and multiple hand action representation using temporal postural synergies,” Exp. Brain Res., 225, 11–36 (2013).

    CAS  PubMed  Google Scholar 

  • Ting, L. H. and McKay, J. L., “Neuromechanics of muscle synergies for posture and movement,” Curr. Opin. Neurobiol., 17, No. 6, 622–628 (2007).

    CAS  PubMed  Google Scholar 

  • Todorov, E. and Jordan, M. I., “Optimal feedback control as a theory of motor coordination,” Nat. Neurosci., 5, No. 11, 1226–1235 (2002).

    CAS  PubMed  Google Scholar 

  • Todorov, E., “Optimality principles in sensorimotor control,” Nature Neurosci., 7, 907–915 (2004).

    CAS  PubMed  Google Scholar 

  • Trombly, C. A., “Deficits of reaching in subjects with left hemiparesis: a pilot study,” Am. J. Occup. Ther., 46, 887–897 (1992).

    CAS  PubMed  Google Scholar 

  • Trumbower, R. D., Ravichandran, V. J., Krutky, M. A., and Perreault, E. J., “Altered multijoint reflex coordination is indicative of motor impairment level following stroke,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 2008, 3558–3561 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Turvey, M. T., “Action and perception at the level of synergies,” Hum. Mov. Sci., 26, 657–697 (2007).

    CAS  PubMed  Google Scholar 

  • Twitchell, T. E., “The restoration of motor function following hemiplegia in man,” Brain, 74, No. 4, 443–480 (1951).

    CAS  PubMed  Google Scholar 

  • van Kordelaar, J., van Wegen, E. E., and Kwakkel, G., “Unraveling the interaction between pathological upper limb synergies and compensatory trunk movements during reach-to-grasp after stroke: a cross-sectional study,” Exp. Brain Res., 221, No. 3, 251–262 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Veerbeek, J. M., Kwakkel, G., van Wegen, E. E., et al., “Early prediction of outcome of activities of daily living after stroke: a systematic review,” Stroke, 42, No. 5, 1482–1488 (2011).

    PubMed  Google Scholar 

  • Vereijken, B., Whiting, H. T., and Beek, W. J., “A dynamical systems approach to skill acquisition,” Q. J. Exp. Psychol. A, 45, 323–344 (1992).

    CAS  PubMed  Google Scholar 

  • Vogel, J., Castellini, C., and van der Smagt, P., “EMG-based teleoperation and manipulation with the DLR LWR-III,” in: Intelligent Robots and Systems (IROS). IEEE/RSJ Int. Conf. 2011 (2011), pp. 672–678.

  • von Carlowitz-Ghori, K., Bayraktaroglu, Z., Hohlefeld, F. U., et al., “Corticomuscular coherence in acute and chronic stroke,” Clin. Neurophysiol., 125, 1182–1191 (2014).

    Google Scholar 

  • Wagner, J. M., Rhodes, J. A., and Patten, C., “Reproducibility and minimal detectable change of three-dimensional kinematic analysis of reaching tasks in people with hemiparesis after stroke,” Phys. Ther., 88, No. 5, 652–663 (2008).

    PubMed  Google Scholar 

  • Ward, N. S., Brown, M. M., Thompson, A. J., and Frackowiak, R. S., “Neural correlates of outcome after stroke: a crosssectional fMRI study,” Brain, 126, 1430–1448 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss, E. J. and Flanders, M., “Muscular and postural synergies of the human hand,” J. Neurophysiol., 92, 523–535 (2004).

    PubMed  Google Scholar 

  • Werhahn, K. J., Conforto, A. B., Kadom, N., et al., “Contribution of the ipsilateral motor cortex to recovery after chronic stroke,” Ann. Neurol., 54, 464–472 (2003).

    PubMed  Google Scholar 

  • Winstein, C. J., Stein, J., Arena, R., et al., “American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research,” Stroke, 47, No. 6, e98–e169 (2016).

    PubMed  Google Scholar 

  • Woolsey, C. N., Erickson, T. C., and Gilson, W. E., “Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation,” J. Neurosurg., 51, 476–506 (1979).

    CAS  PubMed  Google Scholar 

  • Yao, J., Chen, A., Carmona, C., and Dewald, J. P. A., “Cortical overlap of joint representations contributes to the loss of independent joint control following stroke,” Neuroimage, 45, 490–499 (2009).

    PubMed  Google Scholar 

  • Zatsiorskii, V. M., Aruin, A. S., and Seluyanov, V. N., Biomechanics of the Human Motor Apparatus, Physical Culture and Sport Press, Moscow (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 67, No. 3, pp. 273–287, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klochkov, A.S., Khizhnikova, A.E., Nazarova, M.A. et al. Pathological Upper Limb Synergies of Patients with Poststroke Hemiparesis. Neurosci Behav Physi 48, 813–822 (2018). https://doi.org/10.1007/s11055-018-0634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0634-0

Keywords

Navigation