Skip to main content
Log in

“Unpredictable Stress”: Ambiguity of Stress Reactivity in Studies of Long-Term Plasticity

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Data on the influences of stress on the function of long-term synaptic plasticity are analyzed. Using longterm potentiation (LTP) as an example, stress has been shown to have both stimulatory and inhibitory influences on the effectiveness of the induction of long-term modifications, the effect depending on the nature, duration, and intensity of the stress, the observation time point, the brain structure being studied, and, thus, the involvement in the stress response of the different mechanisms underlying LTP. Stress-induced increases in glucocorticoid levels did not obligately correlate with changes in long-term plasticity, while application of corticosterone in vivo and in vitro could lead to both activation and inhibition of LTP. Existing data provide evidence that changes in LTP are determined by the ratio of mineralocorticoid and glucocorticoid receptors, activation of the latter not so much impairing the mechanisms of generation as increasing the threshold of induction of LTP, regulating the metaplasticity of synapses. The unpredictability of the effects of stress is related in particular to the involvement of other transmitter systems regulating metaplasticity whose actions depend on the animal’s individual experience in the stress reaction. The range of individual differences stimulates the ongoing search for significant factors determining the stress reactivity of longterm plasticity underlying stress resistance or susceptibility to its pathological consequences. Differences in the processing of signals arriving at neurons and their molecular mediation may constitute such a factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, T., Frey, J. U., and Korz, V., “Long-term effects of brief acute stress on cellular signaling and hippocampal LTP,” J. Neurosci., 26, 3951–3958 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Akirav, I. and Richter-Levin, G., “Biphasic modulation of hippocampal plasticity by behavioral stress and basolateral amygdala stimulation in the rat,” J. Neurosci., 19, 10,530–10,535 (1999).

  • Akirav, I. and Richter-Levin, G., “Mechanisms of amygdala modulation of hippocampal plasticity,” J. Neurosci., 22, 9912–9921 (2002).

    CAS  PubMed  Google Scholar 

  • Aldenhoff, J. B., Gruol, D. L., Rivier, J., et al., “Corticotropin releasing factor decreases postburst hyperpolarizations and excites hippocampal neurons,” Science, 221, 875–877 (1983).

    Article  CAS  PubMed  Google Scholar 

  • Aleisa, A. M., Alzoubi K. H., Gerges, N. Z., and Alkadhi, K. A., “Nicotine blocks stress-induced impairment of spatial memory and long-term potentiation of the hippocampal CA1 region,” Int. J. Neuropsychopharmacol., 9, No. 4, 417–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Alfarez, D. N., Wiegert, O., Joëls, M., and Krugers, H. T. “Corticosterone and stress reduce synaptic potentiation in mouse hippocampal slices with mild stimulation,” Neuroscience, 115, No. 4, 1119–1126 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Arima-Yoshida, E., Watabe, A. M., and Manabe, T., “The mechanisms of the strong inhibitory modulation of long-term potentiation in the rat dentate gyrus,” Eur. J. Neurosci., 33, 1637–1646 (2011).

    Article  PubMed  Google Scholar 

  • Artola, A., von Frijtag, J. C., Fermont, P. C., et al., “Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment,” Eur. J. Neurosci., 23, No. 1, 261–272 (2006).

    Article  PubMed  Google Scholar 

  • Avital, A., Segal, M., and Richter-Levin, G., “Contrasting roles of corticosteroid receptors in hippocampal plasticity,” J. Neurosci., 26, 9130–9134 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Basta-Kaim, A., Szczesny, E., Glombik, K., et al., “Prenatal stress leads to changes in IGF-1 binding proteins network in the hippocampus and frontal cortex of adult male rat,” Neuroscience, 274, 59–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Blank, T., Nijholt, L., and Spiess, J., “Molecular determinants mediating effects of acute stress on hippocampus-dependent synaptic plasticity and learning,” Mol. Neurobiol., 29, 131–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Blank, T., Nijholt, L., Eckart, K., and Spiess, J., “Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning,” J. Neurosci., 22, 3788–3794 (2002).

    CAS  PubMed  Google Scholar 

  • Bobula, B., Sowa, J., and Hess, G., “Anti-interleukin-1 antibody prevents the occurrence of repeated restraint stress-induced alterations in synaptic transmission and long-term potentiation in the rat frontal cortex,” Pharm Rep., 67, No. 1, 123–128 (2015).

    Article  CAS  Google Scholar 

  • Bobula, B., Wabno, J., and Hess, G., “Imipramine counteracts corticosterone-induced enhancement of glutamatergic transmission and impairment of long-term potentiation in the rat frontal cortex,” Pharm. Rep., 63, 1404–1412 (2011).

    Article  CAS  Google Scholar 

  • Boume, J. N. and Harris, K. M., “Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP,” Hippocampus, 21, 354–373 (2011).

    Article  CAS  Google Scholar 

  • Bramham, C. R., Southard, T., Ahlers S., T., and Sarvey, J. M., “Acute cold stress leading to elevated corticosterone neither enhances synaptic efficacy nor impairs LTP in the dentate gyrus of freely moving rats,” Brain Res., 789, No. 2, 245–255 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Brunson, K. L., Kramar, E., Lin, B., Chen, Y., et al., “Mechanisms of late-onset cognitive decline after early-life stress,” J. Neurosci., 25, No. 41, 9328–9338 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazakoff, B. N. and Howland, J. G., “Acute stress disrupts paired pulse facilitation and long-term potentiation in rat dorsal hippocampus through activation of glucocorticoid receptors,” Hippocampus, 20, 1327–1331 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Cestari, V., Rossi-Arnaud, C., Saraulli, D., and Costanzi, M., “The MAP(K) of fear: from memory consolidation to memory extinction,” Brain Res. Bull., 105, 8–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Chameau, P., Qin, Y., Spijker, S., et al., “Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus,” J. Neurophysiol., 97, No. 1, 5–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Champagne, D. L., Bagot, R. C., van Hasselt, E., et al., “Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress,” J. Neurosci., 28, No. 23, 6037–6045 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Charil, A., Laplante, D. P., Vaillancourt, C., and King, S., “Prenatal stress and brain development,” Brain Res. Rev., 65, 56–79 (2010).

    Article  PubMed  Google Scholar 

  • Chen, J. L., Lin, W. C., Cha J., W., So, P. T., et al.,“ Structural basis for the role of inhibition in facilitating adult brain plasticity,” Nat. Neurosci., 14, 587–594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Fenoglio, K. A., Dubé, C. M., et al., “Cellular and molecular mechanisms of hippocampal activation by acute stress are age-dependent,” Mol. Psychiatry, 11, No. 11, 992–1002 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiuccariello, L., Houle, S., Miler, L., et al., “Elevated monoamine oxidase a binding during major depressive episodes is associated with greater severity and reversed neurovegetative symptoms,” Neuropsycho pharmacology, 39, No. 4, 973–980 (2014).

    Article  CAS  Google Scholar 

  • Conboy, L. and Sandi, C., “Stress at learning facilitates memory formation by regulating AMPA receptor trafficking through a glucocorticoid action,” Neuropsychopharmacology, 35, 674–685 (2010).

    Article  CAS  PubMed  Google Scholar 

  • de Kloet, E. R., Joels, M., and Holsboer, E., “Stress and the brain: from adaptation to disease,” Nat. Rev. Neurosci., 6, No. 6, 463–475 (2005).

    Article  PubMed  CAS  Google Scholar 

  • de Kloet, E. R., Oitzl, M. S., and Jols, M., “Stress and cognition: are corticosteroids good or bad guys?” Trends Neurosci., 22, No. 10, 422–426 (1999).

    Article  PubMed  Google Scholar 

  • Diamond, D. M., Bennett, M. C., Fleshner, M., and Rose, G. M., “Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation,” Hippocampus, 2, No. 4, 421–430 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Diamond, D. M., Park, C. R., and Woodson, J. C., “Stress generates emotional memories and retrograde amnesia by inducing an endogenous form of hippocampal LTP,” Hippocampus, 14, No. 3, 281–291 (2004).

    Article  PubMed  Google Scholar 

  • Diamond, D. M., Park, C. R., Campbell, A. M., and Woodson, J. C., “Competitive interactions between endogenous LTD and LTP in the hippocampus underlie the storage of emotional memories and stress-induced amnesia,” Hippocampus, 15, No. 8, 1006–1025 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Dreyer, B. D., Riedel, G., and Platt, B., “The cholinergic system and hippocampal plasticity,” Behav. Brain Res., 221, 505–514 (2011).

    Article  CAS  Google Scholar 

  • Fa, M., Xia, L., Anunu, R., et al., “Stress modulation of hippocampal activity-spotlight on the dentate gyrus,” Neurobiol. Learn. Mem, 112, 53–60 (2014).

    Article  PubMed  Google Scholar 

  • Fabricius, K., Wörtwein, G., and Pakkenberg, B., “The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus,” Brain Struct. Funct., 212, 403–416 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Feldman, D. E., “The spike-timing dependence of plasticity,” Neuron, 75, 556–571 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finsterwald, C. and Alberini, C. M., “Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies,” Neurobiol. Learn. Mem, 112, 17–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Fontella, F. U., Vendite, D. A., Tabajara, A. S., et al., “Repeated restraint stress alters hippocampal glutamate uptake and release in the rat,” Neurochem. Res., 29, No. 9, 1703–1709 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Franklin, T. B., Linder, N., Russig, H., et al., “Influence of early stress on social abilities and serotonergic functions across generations in mice,” PLoS One, 6, e21842 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey, S., Bergado-Rosado, J., Seindenbecher, T., et al., “Reinforcement of early long-term potentiation (early-LTP) in dentate gyrus by stimulation of the basolateral amygdala: heterosynaptic induction mechanisms of late-LTP,” J. Neurosci., 21, 3697–3703 (2001).

    CAS  PubMed  Google Scholar 

  • Fritschy, J. and Panzanelli, P., “GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system,” Eur. J. Neurosci., 39, 1845–1865 (2014).

    Article  PubMed  Google Scholar 

  • Gadek-Michalska, A. and Bugajski, J., “Repeated handling, restraint, or chronic crowding impair the hypothalamic pituitary-adrenocortical response to acute restraint stress,” J. Physiol. Pharmacol., 54, 449–459 (2003).

    CAS  PubMed  Google Scholar 

  • Gibbs, M. E., Hutchinson, D. S., and Summers, R. J., “Role of betaadrenoceptors in memory consolidation: beta3-adrenoceptors act on glucose uptake and beta2-adrenoceptors on glycogenolysis,” Neuropsycho pharmacology, 33, 2384–2397 (2008).

    Article  CAS  Google Scholar 

  • Godukhin, O. V., “The role of cytokines in the development of convulsive activity in the brain,” Zh. Vyssh. Nerv. Deyat., No. 5, 541–552 (2007).

  • Grigor’yan, G. A. and Gulyaeva, N. V., “Stress reactivity and stress resistance in the pathogenesis of depressive disorders: the role of epigenetic mechanisms,” Zh. Vyssh. Nerv. Deyat., 65, No. 1, 19–32 (2015).

    Google Scholar 

  • Grigor’yan, G. A., Dygalo, N. N., Gekht, A. B., et al., “Molecular cellular mechanisms of depression. The roles of glucocorticoids, cytokines, neurotransmitters, and trophic factors in the genesis of depressive disorders,” Usp. Fiziol. Nauk, 45, No. 2, 3–19 (2014).

    Google Scholar 

  • Grigoryan, G., Ardi, Z., Albrecht, A., et al., “Juvenile stress alters LTP in ventral hippocampal slices: involvement of noradrenergic mechanisms,” Behav. Brain Res., 278, 559–562 (2015).

    Article  PubMed  Google Scholar 

  • Groc, L., Choquet, D., and Chaouloff, E., “The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation,” Nat. Neurosci., 11, 868–870 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Groeneweg, E. L., Karst, H., de Kloet, E. R., and Joels, M., “Rapid nongenomic effects of corticosteroids and their role in the central stress response,” J. Endocrinol., 209, 153–167 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Grunewald, M., Johnson, S., Lu, D., et al., “Mechanistic role for a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression,” J. Biol. Chem., 287, No. 29, 24195–24206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulyaeva, N. V., “Fundamental and translational aspects of the stress reactivity of the ventral hippocampus: functional biochemical mechanisms of changes in neuroplasticity,” Neirokhimiya, No. 2, 101–111 (2015).

  • Hayama, T., Noguchi, J., Watanabe, S., et al., “GABA promotes the competitive selection of dendritic spins by controlling local Ca2+ signaling,” Nat. Neurosci., 16, No. 10, 1409–1416 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt, S. A., Wamsteeker, J. I., Kurz E.,U., and Bains, J. S., “Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis,” Nat. Neurosci., 12, 438–443 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Hiraide, S., Saito, Y., Matsumoto, M., et al., “Possible modulation, of the amygdala on metaplasticity deficits in the hippocampal CA1 field in early postnatally stressed rats,” J. Pharmacol. Sci., 119, 64–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Hirata, R., Matsumoto, M., Judo, C., et al., “Possible relationship between the stress-induced synaptic response and metaplasticity in the hippocampal CA1 field of freely moving rats,” Synapse, 63, No. 7, 549–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Holm, M. M., Nieto-Gonzalez, I. L., Vardya, I., et al., “Hippocampal GABA - ergic dysfunction in a rat chronic mild stress model of depression,” Hippocampus, 21, No. 4, 422–433 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Holmes, A. and Wellman, C. L., “Stress-induced prefrontal reorganization and executive dysfunction in rodents,” Neurosci. Biobehav. Rev., 33, 773–783 (2009).

    Article  PubMed  Google Scholar 

  • Howland, I. G. and Wang, Y. T., “Synaptic plasticity in learning and memory: stress effects in the hippocampus,” Prog. Brain Res., 169, 145–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Hu, W., Zhang, M., Czeh, B., et al., “Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network,” Neuropsychopharmacology, 35, 1693–1707 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C. C., Yang, C. H., and Hsu, K. S., “Do stress and long-term potentiation share the same molecular mechanisms?” Mol. Neurobiol., 32, No. 3, 223–235 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Inoue, W. and Bains, J. S., “Beyond inhibition: GABA synapses tune the neuroendocrine stress axis,” Bioessays, 36, 561–569 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Inoue, W., Baimoukhametova D. V., Fuzesi, T., et al., “Noradrenaline is a stress-associated metaplastic signal at GABA synapses,” Nat. Neurosci., 16, No. 5, 605–612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa, S., Saito, Y., Yanagawa, Y., et al., “Early postnatal stress alters extracellular signal-regulated kinase signaling in the corticolimbic system modulating emotional circuitry in adult rats,” Eur. J. Neurosci., 35, No. 1, 135–145 (2012).

    Article  PubMed  Google Scholar 

  • Jin, Y., Kanno, T., and Nishizaki, T., “Acute restraint stress impairs induction of long-term potentiation by activating GSK3β,” Neurochem. Res., 40, No. 1, 36–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Joels, M. and Krugers, H. T., “LTP after Stress: Up or Down?” Neural Plast., 2007, 93202 (2007).

  • Joels, M., “Corticosteroid effects in the brain: U-shape it,” Trends Pharmacol. Sci., 27, 5, 244–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Joels, M., “Stress, the hippocampus, and epilepsy,” Epilepsia, 50, 586–597 (2009).

    Article  PubMed  Google Scholar 

  • Joels, M., Karst, H., DeRijk, R., and de Kloet, E. R., “The coming out of the brain mineralocorticoid receptor,” Trends Neurosci., 31, No. 1, 1–7 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Joels, M., Krugers, H. J., Lucassen, P. I., and Karst, H., “Corticosteroid effects on cellular physiology of limbic cells,” Brain Res., 293, 91–100 (2009).

    Article  CAS  Google Scholar 

  • Joels, M., Velzing, E., Nair, W., et al., “Acute stress increases calcium current amplitude in rat hippocampus: temporal changes in physiology and gene expression,” Eur. J. Neurosci., 18, 1315–1324 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Kallarackal, A. J., Kvarta, M. D., Cammarata, E., et al., “Chronic stress induces a selective decrease in AMPA receptor-mediated synaptic excitation at hippocampal temporoammonic-CA1 synapses,” J. Neurosci., 33, No. 40, 15,669–15,674 (2013).

  • Kamal, A., Ramakers, G. M., Altinbilek, B., and Kas, M. J., “Social isolation stress reduces hippocampal long-term potentiation: effect of animal strain and involvement of glucocorticoid receptors,” Neuroscience, 256, 262–270 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Karst, H., Berger, S., Erdmann, G., et al., “Metaplasticity of amygdalar responses to the stress hormone corticosterone,” Proc. Natl. Acad. Sci. USA, 107, 14449–14454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karst, H., Berger, S., Turiault, M., et al., “Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone,” Proc. Natl. Acad. Sci. USA, 102, No. 52, 19204–19207 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karst, H., Wadman, W. J., and Joëls, M., “Corticosteroid receptor-dependent modulation of calcium currents in rat hippocampal CA1 neurons,” Brain Res., 649, No. 1–2, 234–242 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Kavushansky, A., Vouimba, R. M., Cohen, H., and Richter-Levin, G., “Acti vity and plasticity in the CA1, the dentate gyrus, and the amygdala following controllable vs. uncontrollable water stress,” Hippocampus, 16, No. 1, 35–42 (2006).

    Article  PubMed  Google Scholar 

  • Kim Ji, Song E.,Y. , and Kosten, T. A.,“ Stress effects in the hippocampus: synaptic plasticity and memory,” Stress, 9, 1–11 (2006).

    Article  CAS  Google Scholar 

  • Kim, J. J., Koo, J. W., Lee, H. J., and Han, J. S., “Amygdalar inactivation blocks stress-induced impairments in hippocampal long-term potentiation and spatial memory,” J. Neurosci., 25, No. 6, 1532–1539 (2005) .

    Article  CAS  PubMed  Google Scholar 

  • Kleschevnikov, A. M., Belichenko, P. V., Villar, A. J., et al., “Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome,” J. Neurosci., 24, 8153–8160 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Kleshchevnikov, A. M. and Voronin, L. L., “Repeated induction of longterm potentiation after its saturation in living hippocampal slices from rats,” Dokl. Akad. Nauk, 340, No. 5, 694–696 (1995).

    CAS  PubMed  Google Scholar 

  • Korz, V. and Frey, J. U., “Stress-related modulation of hippocampal longterm potentiation in rats: involvement of adrenal steroid receptors,” J. Neurosci., 23, No. 19, 7281–7287 (2003).

    CAS  PubMed  Google Scholar 

  • Krugers H. J., Alfarez, D. N., Karst, H., et al., “Corticosterone shifts different forms of synaptic potentiation in opposite directions,” Hippocampus, 15, No. 6, 697–703 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kudryashova, I. V., “Plasticity of inhibitory synapses as a factor in longterm modifications,” Neirokhimiya, 32, No. 3, 181–191 (2015).

    Google Scholar 

  • Lanfumey, L., Mongeau, R., Cohen-Salmon, C., and Hamon, M., “Corticos teroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders,” Neurosci. Biobehav. Rev., 32, 1174–1184 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Lapiz, M. D., Fulford, A., Muchimapura, S., et al., “Influence of postweaning social isolation in the rat on brain development, conditioned behavior, and neurotransmission ,” Neurosci. Behav. Physiol., 33, No. 1, 13–29 (2003).

  • Lee, E. J., Son, G. H., Chung, S., et al., “Impairment of fear memory consolidation in maternally stressed male mouse offspring: Evidence for nongenomic glucocorticoid action on the amygdala,” J. Neurosci., 31, No. 19, 7131–7140 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. Y., Hwang, Y. K., Yun, H. S., and Han, J. S., “Decreased levels of nuclear glucocorticoid receptor protein in the hippocampus of aged Long-Evans rats with cognitive impairment,” Brain Res., 1478, 48–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Lim, C. S., Kim Yi, Hwang, Y. K., et al., “Decreased interactions in protein kinase A-Glucocorticoid receptor signaling in the hippocampus after selective removal of the basal forebrain cholinergic input,” Hippocampus, 22, 455–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Liu, M., Li, J., Dai, P., et al., “Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction,” Stress, 18, No. 1, 96–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Lopes Aguiar, C., Romcy-Pereira, R. N., Escorsim Szawka, R., et al., “Mus carinic acetylcholine neurotransmission enhances the latephase of long-term potentiation in the hippocampal-prefrontal cortex pathway of rats in vivo: a possible involvement of monoaminergic systems,” Neuroscience, 153, No. 4, 1309–1319 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Lupien, S. J., McEwen, B. S., Gunnar, M. R., and Heim, C., “Effects of stress throughout the lifespan on the brain, behavior and cognition,” Nat. Rev. Neurosci., 10, 434–445 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Lussier, A. L., Romay-Tallon, R., Caruncho, H. J., and Kalynchuk, L. E., “Altered GABAergic and glutamatergic activity within the rat hippocampus and amygdala in rats subjected to repeated corticosterone administration but not restraint stress,” Neuroscience, 231, 38–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Maccari, S., Krugers, H. J., Morley-Fletcher, S., et al., “The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations,” J. Neuroendocrinol., 26, 707–723 (2014).

    Article  CAS  PubMed  Google Scholar 

  • MacDougall, M. J. and Howland, J.G., “Acute stress and hippocampal output: exploring dorsal CA1 and subicular synaptic plasticity simultaneously in anesthetized rats,” Physiol. Rep., 1, No. 2, e00035 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Maggio, N. and Segal, M., “Cellular basis of a rapid effect of mineralocorticosteroid receptors activation on LTP in ventral hippocampal slices,” Hippocampus, 22, No. 2, 267–275 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Maggio, N. and Segal, M., “Differential corticosteroid modulation of inhibitory synaptic currents in the dorsal and ventral hippocampus,” J. Neurosci., 29, No. 9, 2857–2866 (2009a).

    Article  CAS  PubMed  Google Scholar 

  • Maggio, N. and Segal, M., “Differential modulation of long-term depression by acute stress in the rat dorsal and ventral hippocampus,” J. Neurosci., 29, No. 27, 8633–8638 (2009b).

    Article  CAS  PubMed  Google Scholar 

  • Maggio, N. and Segal, M., “Striking variations in corticosteroid modulation of long-term potentiation along the septotemporal axis of the hippocampus,” J. Neurosci., 27, No. 21, 5757–5765 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Maguire, J. and Mody, I., “Steroid hormone fluctuations and GABA(A)R plasticity,” Psychoneuroendocrinology, 34, S84–S90 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marmigere, E., Givalois, L., Rage, E., et al., “Rapid induction of BDNF expression in the hippocampus during immobilization stress challenge in adult rats,” Hippocampus, 13, 646–655 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Maroun, M., “Stress reverses plasticity in the pathway projecting from the ventromedial prefrontal cortex to the basolateral amygdala,” Eur. J. Neurosci., 24, No. 10, 2917–2922 (2006).

    Article  PubMed  Google Scholar 

  • Martin, S., Henley, J. M., Holman, D., et al., “Corticosterone alters AMPAR mobility and facilitates bidirectional synaptic plasticity,” PLoS One, 4, No. 3, e4714 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsumoto, K., Puia, G., Dong, E., and Pinna, G., “GABA(A) receptor neu ro transmission dysfunction in a mouse model of social isolation-induced stress: possible insights into a non-serotonergic mechanism of action of SSRIs in mood and anxiety disorders,” Stress, 10, 3–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto, M., Togashi, H., Ohashi, S., et al., “Serotonergic modulation of psychological stress-induced alteration in synaptic plasticity in the rat hippocampal CA1 field,” Brain Res., 1022, 221–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  • McEwen, B. S., “Physiology and neurobiology of stress and adaptation: central role of the brain,” Physiol. Rev., 87, 873–904 (2007).

    Article  PubMed  Google Scholar 

  • McGaugh, J. L., “Making lasting memories: remembering the significant,” Proc. Natl. Acad. Sci. USA, 110, No. 2, 10402–10407 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McReynolds, J. R., Donowho, K., Abdi, A., et al., “Memory-enhancing corticosterone treatment increases amygdala norepinephrine and Arc protein expression in hippocampal synaptic fractions,” Neurobiol. Learn. Mem, 93, 312–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Mesquita, A. R., Pêgo, J. M., Summavielle, T., et al., “Neurodevelopment milestone abnormalities in rats exposed to stress in early life,” Neuroscience, 147, 1022–1033 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Mora, E., Segovia, G., Del Arco, A., et al., “Stress, neurotransmitters, corticosterone and body-brain integration,” Brain Res., 1476, 71–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Musazzi, L., Racagni, G., and Popoli, M., “Stress, glucocorticoids and glutamate release: Effects of antidepressant drugs,” Neurochem. Int., 59, 138–149 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Nikzad, S., Vafaei, A. A., Rashidy-Pour, A., and Haghighi, S. “Systemic and intrahippocampal administrations of the glucocorticoid receptor antagonist RU38486 impairs fear memory reconsolidation in rats,” Stress, 14, 459–464 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Olijslagers, J. E, de Kloet, E. R., Elgersma, Y., et al., “Rapid changes in hippocampal CA1 pyramidal cell function via pre- as well as postsynaptic membrane mineralocorticoid receptors,” Eur. J. Neurosci., 27, No. 10, 2542–2550 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Oomen, C. A., Soeters, H., Audureau, N., et al., “Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood,” J. Neurosci., 30, 6635–6645 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Paille, V., Fino, E., Du, K., et al., “GABAergic circuits control spike-timing-dependent plasticity,” J. Neurosci., 33, No. 22, 9353–9363 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Park, H. J., Lee, S., Jung, J. W, et al., “Glucocorticoid- and long-term stress-induced aberrant synaptic plasticity are mediated by activation of the glucocorticoid receptor ,” Arch Pharm. Res., 38, No. 6, 1204–1212 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Pavlides, C., Nivon, L. G., and McEwen, B. S., “Effects of chronic stress on hippocampal long-term potentiation,” Hippocampus, 12, 2, 245–257 (2002).

    Article  PubMed  Google Scholar 

  • Polman, J. A., de Kloet, E. R., and Datson, N. A., “Two populations of glucocorticoid receptor-binding sites in the male rat hippocampal genome,” Endocrinology, 154, 1832–1844 (2013).

    Article  PubMed  CAS  Google Scholar 

  • Popoli, M., Yan, Z., McEwen, B. S., and Sanacora, G., “The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission,” Nat. Rev. Neurosci., 13, 22–37 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prager, E. M., Brielmaier, J., Bergstrom, H. C., et al., “Localization of mineralocorticoid receptors at mammalian synapses,” PLoS One, 5, No. 12, e14344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, X., Liu, Y., Zhu, M., and Yang, Z., “The possible relationship between expressions of TRP C3/5 channels and cognitive changes in rat model of chronic unpredictable stress,” Behav. Brain Res., 290, 180–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Radahmadi, M., Hosseini, N., and Nasimi, A., “Effect of chronic stress on short and long-term plasticity in dentate gyrus; study of recovery and adaptation,” Neuroscience, 280, 121–129 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Radley, J. J., Rocher, A. B., Janssen, W. G., et al., “Reversibility of apical dendritic retraction in the rat media] prefrontal cortex following repeated stress,” Exp. Neurol., 196, 199–203 (2005).

  • Rey, M., Carlier, E., Talmi, M., and Soumireu-Mourat, B., “Corticosterone effects on long-term potentiation in mouse hippocampal slices,” Neuroendocrinology, 60, 36–41 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Richter-Levin, G. and Maroun, M., “Stress and amygdala suppression of metaplasticity in the medial prefrontal cortex,” Cereb. Cortex, 20, No. 10, 2433–2441 (2010).

    Article  PubMed  Google Scholar 

  • Richter-Levin, G., “The amygdala, the hippocampus, and emotional modulation of memory,” Neuroscientist, 10, No. 1, 31–39 (2004).

    Article  PubMed  Google Scholar 

  • Roozendaal, B., “Systems mediating acute glucocorticoid effects on memory consolidation and retrieval,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 27, No. 8, 1213–1223 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Roozendaal, B., McEwen, B. S., and Chattarji, S., “Stress, memory and the amygdala,” Nat. Rev. Neurosci., 10, 423–433 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Sachs, B. D., Ni, J. R., and Caron, M. G., “Sex differences in response to chronic mild stress and congenital serotonin deficiency,” Psychoneuro endocrinology, 40, 123–129 (2014).

    Article  CAS  Google Scholar 

  • Sarkar, J., Wakefield, S., Mackenzie, G., et al., “Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors,” J. Neurosci., 31, 18,198–18,210 (2011).

  • Schayek, R. and Maroun, M., “Differences in stress-induced changes in extinction and prefrontal plasticity in postweanling and adult animals,” Biol. Psychiatry, 78, No. 3, 159–166 (2015).

    Article  PubMed  Google Scholar 

  • Schmidt, M. V., Abraham, W. C., Maroun, M., et al., “Stress-induced metaplasticity: from synapses to behavior,” Neuroscience, 250, 112–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Segal, M., Richter-Levin, G., and Maggio, N., “Stress-induced dynamic routing of hippocampal connectivity: a hypothesis,” Hippocampus, 20, 1332–1338 (2010).

    Article  PubMed  Google Scholar 

  • Serra, M., Pisu M. G., Mostallino M. C., et al., “Changes in neuroactive steroid content during social isolation stress modulate GABAA receptor plasticity and function,” Brain Res. Rev., 57, 520–530 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Sharvit, A., Segal, M., Kehat, O., et al., “Differential modulation of synaptic plasticity and local circuit activity in the dentate gyrus and CA1 regions of the rat hippocampus by corticosterone,” Stress, 18, No. 3, 319–327 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Shen, H., Sabaliauskas, N., Sherpa, A., et al., “A critical role for alpha-4betadelta GABAA receptors in shaping learning deficits at puberty in mice ,” Science, 327, No. 5972, 1515–1518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skrebitskii V. G. and Shtark, M. B. , “Fundamental basics of nervous system plasticity,” Vestn. Ross. Akad. Med. Nauk., No. 9, 39–44 (2012).

  • Slotkin, T. A., Kreider, M. L., Tate, C. A., and Seidler, E. J., “Critical prenatal and postnatal periods for persistent effects of dexamethasone on serotonergic and dopaminergic systems,” Neuropsycho pharmacology, 31, 904–911 (2006).

    Article  CAS  Google Scholar 

  • Sousa, N., Cerqueira, J. J., and Almeida, O. F., “Corticosteroid receptors and neuroplasticity,” Brain Res. Rev., 57, No. 2, 561–570 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Sowa, J., Bobula, B., Glombik, K., et al., “Prenatal stress enhances excitatory synaptic transmission and impairs long-term potentiation in the frontal cortex of adult offspring rats,” PLoS One, 10, No. 3, e0119407 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spyrka, J. and Hess, G., “Repeated restraint-induced modulation of longterm potentiation in the dentate gyrus of the mouse,” Brain Res., 1320, 28–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Spyrka, J., Danielewicz, J., and Hess, G., “Brief neck restraint stress enhances long-term potentiation and suppresses long-term depression in the dentate gyrus of the mouse,” Brain Res. Bull., 85, 363–367 (2011).

    Article  PubMed  Google Scholar 

  • Tsoory, M. M., Vouimba, R. M., Akirav, I., et al., “Amygdala modulation of memory-related processes in the hippocampus: potential relevance to PTSD,” Prog. Brain Res., 167, 35–51 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Venzala, E., Garcia-Garcia, A. L., Elizalde, N., and Tordera, R. M., “Social vs. environmental stress models of depression from a behavioural and neurochemical approach,” Eur. Neuropsychopharmacol., 23, No. 7, 697–708 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Verkuyl, J. M., Karst, H., and Joas, M., “GABAergic transmission in the rat paraventricular nucleus of the hypothalamus is suppressed by corticosterone and stress,” Eur. J. Neurosci., 21, 113–121 (2005).

    Article  PubMed  Google Scholar 

  • Viviani, B., Boraso, M., Valero, M., et al., “Early maternal deprivation immunologically primes hippocampal synapses by redistributing interleukin-1 receptor type I in a sex dependent manner,” Brain Behav. Immun., 35, 135–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Voronin, L., Byzov, A., Kleschevnikov, A., et al., “Neurophysiological analysis of long-term potentiation in mammalian brain,” Behav. Brain Res., 66, No. 1–2, 45–52 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Vouimba, R. M. and Richter-Levin, G., “Physiological dissociation in hippocampal subregions in response to amygdala stimulation,” Cereb. Cortex, 15, 1815–1821 (2005).

    Article  PubMed  Google Scholar 

  • Vouimba, R. M., Yaniv, D., and Richter-Levin, G., “Glucocorticoid receptors and beta-adrenoceptors in basolateral amygdala modulate synaptic plasticity in hippocampal dentate gyrus, but not in area CA1,” Neuropharmacology, 52, 244–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Vouimba, R. M., Yaniv, D., Diamond, D., and Richter-Levin, G., “Effects of inescapable stress on LTP in the amygdala versus the dentate gyrus of freely behaving rats,” Eur. J. Neurosci., 19, 1887–1894 (2004).

    Article  PubMed  Google Scholar 

  • Wang, X. D., Su, Y. A., Wagner, K. V., et al., “Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss,” Nat. Neurosci., 16, No. 6, 706–713 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Wiegert, O., Joëls, M., and Krugers, H. J., “Timing is essential for rapid effects of corticosterone on synaptic potentiation in the mouse hippocampus,” Learn. Mem., 13, No. 2, 110–113 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Wiegert, O., Pu, Z., Shor, S., et al., “Glucocorticoid receptor activation selectively hampers N-methyl-D-aspartate receptor dependent hippocampal synaptic plasticity in vitro,” Neuroscience, 135, 403–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wong, D. L., Tai, T. C., Wong-Faull, D. C., et al., “Epinephrine: a shortand long-term regulator of stress and development of illness: a potential new role for epinephrine in stress,” Cell. Mol. Neurobiol., 32, No. 5, 737–748 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Woodin, M. A., Ganguly, K., and Poo, M., “Coincident pre-and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl-transporter activity,” Neuron, 39, 807–820 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Yamada, K., McEwen, B. S., and Pavlides, C., “Site and time dependent effects of acute stress on hippocampal long-term potentiation in freely behaving rats,” Exp. Brain Res., 152, No. 1, 52–59 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Yang, C.-H., Huang, C.-Ch., and Hsu, K.-S., “Behavioral stress modifies hippocampal synaptic plasticity through corticosterone-induced sustained extracellular signal-regulated kinase/mitogen-activated protein kinase activation,” J. Neurosci., 24, No. 49, 11029–11034 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Yang, E. C. and Liang, K. C., “Interactions of the dorsal hippocampus, medial prefrontal cortex and nucleus accumbens in formation of fear memory: difference in inhibitory avoidance learning and contextual fear conditioning,” Neurobiol. Learn. Mem., 112, 186–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Yang, P.-C., Yang, C.-H., Huang, C.-C., and Hsu, K.-S., “Phosphatidylinositol 3-kinase activation is required for stress protocol-induced modification of hippocampal synaptic plasticity,” J. Biol. Chem., 283, 2631–2643 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Yuen, E. Y., Liu, W., Karatsoreos, L. N., et al., “Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory,” Mol. Psychiatry, 16, No. 2, 156–170 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Zheng, C. and Zhang, T., “Synaptic plasticity-related neural oscillations on hippocampus-prefrontal cortex pathway in depression,” Neuro science, 292, 170–180 (2015).

    CAS  Google Scholar 

  • Zheng, G., Zhang, X., Chen, Y., et al., “Evidence for a role of GABAA receptor in the acute restraint stress-induced enhancement of spatial memory,” Brain Res., 1181, 61–73 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, M. Y., Wang, W. P., Huang, J., et al., “Repeated immobilization stress alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels,” Neurochem. Int., 53, 346–354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zitman, F. M., Lucas, M., Trinks, S., et al., “Dentate gyrus local circuit is implicated in learning under stress-a role for neurofascin,” Mol. Neurobiol., 53, No. 2, 842–850 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kudryashova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 66, No. 4, pp. 414–428, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashova, I.V., Gulyaeva, N.V. “Unpredictable Stress”: Ambiguity of Stress Reactivity in Studies of Long-Term Plasticity. Neurosci Behav Physi 47, 948–959 (2017). https://doi.org/10.1007/s11055-017-0496-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-017-0496-x

Keywords

Navigation