Skip to main content
Log in

Glutamatergic Excitation of Cortical Neurons Depending on the Point of Origin on the Membrane and Cholinergic Regulation in Hypothermia

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Experiments on guinea pig sensorimotor cortex slices with cooling of the incubation medium from 34°C to 21–22°C showed that hypothermia had no effect on evoked spike responses to application of glutamate to cell bodies, while application of glutamate to dendritic loci induced spike responses in the body with a short latent period with a hypothermic increase in the level of spontaneous activity and a longer latent period with a hypothermic decrease. Low-frequency neurons mainly showed increases in spontaneous activity on cooling, while high-frequency neurons (activity greater than 4 spikes/sec) responded with decreases in spike activity. The level of spontaneous sensorimotor cortex neuron activity started to change when the temperature dropped below 30°C. At this temperature, responses to iontophoretic delivery of acetylcholine to nerve cells decreased and there was a reduction in spike amplitude, which became greater with increasing cooling. These data provide evidence that hypothermic changes in the level of spontaneous activity evoked by altered influences on cell bodies of glutamatergic excitation of the dendrites, along with impairment to ion homeostasis, leading to decreases in spike amplitude are associated with temperature-dependent limiting of the rate of the M-cholinergic process over the temperature range 27–29°C. Neurons with different functional properties had different sensitivities to hypothermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. Aslanidi, G. V. Aslanidi, D. M. Vachadze, et al., “The possible involvement of ionic stress in the cold death of cells,” Biol. Membrany, 14, No. 1, 50–65 (1997).

    CAS  Google Scholar 

  2. L. Sachs, Statistische Auswertungsmethoden [Russian translation], Springer Verlag, Berlin, Heidelberg, New York (1972).

  3. E. V. Zaimaz’ and S. A. Shelkovnikov, Muscarinic Cholinoreceptors, Nauka, Leningrad (1989).

  4. K. P. Ivanov, “Changes in physiological functions, the mechanisms restoring them, and the temperature limits of life in hypothermia,” Usp. Fiziol. Nauk., 27, No. 3, 84–105 (1996).

    CAS  PubMed  Google Scholar 

  5. K. P. Ivanov, The Basis of the Body’s Energetics, Vol. 4, The Body’s Energy Resources and Survival Physiology, Nauka, St. Petersburg (2004).

  6. D. A. Ignat’eva, R. Ya. Gordon, V. V. Vorob’eva, and V. V. Rogachevskii, “Comparative analysis of processes underlying the recovery of electroencephalographic and protein-synthesizing activity of the neocortex and hippocampus in hibernating (ground squirrels) and nonhibernating (rats) animals on exit from hypothermia,” Biofi zika, 50, No. 1, 140–151 (2005).

  7. Yu. S. Mednikova and N. V. Pasikova, “The temperature sensitivity of the cholinergic reaction of brain neurons in guinea pigs,” Ros. Fiziol. Zh., 90, No. 2, 193–201 (2004).

    CAS  Google Scholar 

  8. Yu. S. Mednikova, F. V. Kopytova, and M. N. Zhadin, “Levels of spontaneous activity and spike responses of cortical neurons to local application of excitatory amino acids to the dendrites and body,” Ros. Fiziol. Zh., 94, No. 5, 502–511 (2008).

    Google Scholar 

  9. Yu. S. Mednikova, F. V. Kopytova, and M. N. Zhadin, “Spontaneous activity of cortical neurons in vitro and its regulation by acetylcholine,” Ros. Fiziol. Zh., 95, No. 8, 820–829 (2009).

    CAS  Google Scholar 

  10. Yu. S. Mednikova, N. V. Pasikova, and F. V. Kopytova, “The effect of temperature on the spike activity of cortical neurons in guinea pigs,” Ros. Fiziol. Zh., 88, No. 11, 1492–1500 (2002).

    Google Scholar 

  11. L. L. Pavlik, P. I. Pakhotin, and D. A. Moshkov, “Effects of prolonged hypothermia on the structure and function of neurons in living slices of guinea pig and ground squirrel hippocampus,” Tsitologiya, 33, No. 3, 23–29 (1991).

  12. L. Prosser, Temperature. Comparative Animal Physiology [Russian translation], Mir, Moscow (1977), Vol. II, pp. 84–209.

  13. P. R. Adams, D. A. Brown, and A. Constanti, “Pharmacological inhibition of the M-current,” J. Physiol., 332, 223–262 (1982).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. H. Aihara, Y. Okada, and N. Tamaki, “The effects of cooling and rewarming on the neuronal activity of pyramidal neurons in guinea pig hippocampal slices,” Brain Res., 893, 36–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. R. G. Boutilier, “Mechanisms of cell survival in hypoxia and hypothermia,” J. Exp. Biol., 204, 3171–3181 (2001).

    CAS  PubMed  Google Scholar 

  16. D. A. Brown, N. J. Buckley, M. P. Caulfield, et al., “Coupling of muscarinic acetylcholine receptors to neural ion channels: closure of K+channels,” in: Molecular Mechanisms of Muscarinic Acetylcho line Receptor Function, J. Wess (ed.), Springer R. G. Laudes Co., Berlin, Heidelberg (1995), pp. 165–182.

    Google Scholar 

  17. P. W. Hochachka, “Defense strategies against hypoxia and hypothermia,” Science, 231, 234–241 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. L. Kaczmarec, M. Kossut, and J. Skangiel-Kramska, “Glutamate receptors in cortical plasticity: molecular and cellular biology,” Physiol. Rev., 77, No. 1, 217–255 (1997).

    Google Scholar 

  19. J. Kang, J. R. Huguenard, and D. A. Prince, “Development of BK channels in neocortical pyramidal neurons,” J. Neurophysiol., 76, No. 1, 199–198 (1996).

    Google Scholar 

  20. K. Krnjević, R. Pumain, and L. Renaud, “The mechanism of excitation by acetylcholine in the cerebral cortex,” J. Physiol., 215, No. 1, 247–268 (1971).

    Article  PubMed Central  PubMed  Google Scholar 

  21. R. J. MacGregor, “A model for responses to activation by axodendritic synapses,” Biophys. J., 8, No. 3, 305–318 (1968).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. D. A. McCormick and D. A. Prince, “Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro,” J. Physiol., 375, 169–194 (1986).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Y. S. Mednikova, S. V. Karnup, and E. V. Loseva, “Cholinergic excitation of dendrites in neocortical neurons,” Neuroscience, 87, No. 4, 783–796 (1998).

  24. C. M. A. Pennartz, M. T. G. DeJeu, A. M. S. Geurtsen, et al., “Electrophysiological and morphological heterogeneity of neurons in slices of rat suprachiasmatic nucleus,” J. Physiol., 506, No. 3, 775–793 (1998).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. K. H. Polderman, “Mechanisms of action, physiological effects, and complications of hypothermia,” Crit. Care Med., 37, No. 7, Suppl., S186–S202 (2009).

  26. W. Rall, R. E. Burke, W. R. Holmes, et al., “Matching dendritic neuron models to experimental data,” Physiol. Rev., 72, No. 4, Suppl., S159–S186 (1992).

  27. S. M. Thompson, L. M. Masukawa, and D. A. Prince, “Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro,” J. Neurosci., 5, No. 3, 817–824 (1985).

    CAS  PubMed  Google Scholar 

  28. M. Volgushev, I. Kudryashov, M. Chistiakova, et al., “Probability of transmitter release at neocortical synapses at different temperatures,” J. Neurophysiol., 92, No. 1, 212–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. S. R. Williams and G. J. Stuart, “Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons,” Science, 295, 1907–1910 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Mednikova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 100, No. 9, pp. 1008–1024, September, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mednikova, Y.S., Pasikova, N.V., Zakharova, N.M. et al. Glutamatergic Excitation of Cortical Neurons Depending on the Point of Origin on the Membrane and Cholinergic Regulation in Hypothermia. Neurosci Behav Physi 46, 328–337 (2016). https://doi.org/10.1007/s11055-016-0237-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0237-6

Keywords

Navigation