Skip to main content
Log in

Power of Evoked γ Responses to a Facial Expression Using an 8-Second Pause between Target and Trigger Stimuli

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

EEG power in the γ range (21–60 Hz) was assessed during the formation and testing of a cognitive set to a facial expression in terms of a model assuming that the loading on working memory could be increased by increasing the pause between the target and trigger stimuli to 8 sec. The results were compared with data from previous experiments with increased loading in the form of an additional cognitive task, when there was an increase in the power of γ responses. The present experiments demonstrated a decrease in the power of γ responses to set stimuli (with respect to the level during the prestimulus period) in all groups of subjects, which is interpreted as a sign associated with inhibition of γ activity. Significant differences in γ-range power levels between these groups were seen on comparison of set stages (formation and testing), and on comparison of frequency ranges. The second important finding was the absence of any differences in the dynamics of the power of γ2 patterns (41–60 Hz) between groups of subjects depending on the “success” of task performance. Arguments are proposed whereby the paradoxical nature of the present results are explained in terms of the conditions in which this set model is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canolty, R. T. and Knight, R. T., “The functional role of cross-frequency coupling,” Trends Cogn. Sci., 14, No. 11, 506–515 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Canolty, R. T., Edwards, E., Dalal, S. S., et al., “High gamma power is phase-locked to theta oscillations in human neocortex,” Science, 313, 1626–1628 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Couli, J. T. and Nobre, A. C., “Where and when to play attention: the neural systems for directing attention to spatial location and to time intervals as revealed by both BET and fMRI,” J. Neurosci., 18, No. 18, 7426–7435 (1998).

    Google Scholar 

  4. Demiralp, T., Bayraktaroglu, Z., Lenz, D., et al., “Gamma amplitudes are coupled to theta phase in human EEG during visual perception,” Int. J. Psychophysiol., 64, No. 1, 24–30 (2007).

    Article  PubMed  Google Scholar 

  5. Dumenko, V. N. And Kozlov, M. K., “Baseline EEG γ activity and evoked responses to facial stimuli in a cognitive set model,” Fiziol. Chelov., 37, No. 4, 26–34 (2011).

    CAS  Google Scholar 

  6. Dumenko, V. N. and Kozlov, M. K., “Dynamics of γ activity power in evoked responses to a facial expression in conditions of loading on working memory,” Zh. Vyssh. Nerv. Deyat., 62, No. 1, 20–32 (2012).

    CAS  Google Scholar 

  7. Dumenko, V. N. and Kozlov, M. K., “Study of the EEG phenomenon of high-frequency bursts in the neocortical electrical activity of dogs in the process of alimentary instrumental learning,” Exp. Brain Res., 116, 539–547 (1997).

    Article  PubMed  CAS  Google Scholar 

  8. Dumenko, V. N., “Functional heterogeneity of cortical potentials in the γ band,” Zh. Vyssh. Nerv. Deyat., 62, No. 4, 401–415 (2012).

    CAS  Google Scholar 

  9. Dumenko, V. N., “The functional role of neocortical γ activity in the processes supporting interregional interactions,” Zh. Vyssh. Nerv. Deyat., 64, No. 1, 3–20 (2014).

    CAS  Google Scholar 

  10. Dumenko, V. N., High-Frequency EEG Components and Operant Learning, Nauka, Moscow (2006).

    Google Scholar 

  11. Dumenko, V. N., Kozlov, M. K., Kurova, N. S., and E. A. Cheremushkin, “Dynamics of EEG power spectra in the prestimulus period in the band 1–60 Hz at different stages of a cognitive set to a facial expression,” Zh. Vyssh. Nerv. Deyat., 59, No. 4, 389–402 (2009a).

    CAS  Google Scholar 

  12. Dumenko, V. N., Kozlov, M. K., Kurova, N. S., and E. A. Cheremushkin, “Interhemisphere relationships of the power of cortical potentials in the band 1–60 Hz on formation and testing of a set to a facial expression,” Zh. Vyssh. Nerv. Deyat., 59, No. 5, 568–580 (2009b).

    CAS  Google Scholar 

  13. Edwards, E., Soltani, M., Deouell, L. Y., et al., “High gamma activity in response to deviant auditory stimuli recorded directly from human cortex,” J. Neurophysiol., 94, 4269–4280 (2005).

    Article  PubMed  Google Scholar 

  14. Freeman, W. J., “The physiology of perception,” Sci. Amer., 264, 78–85 (1991).

    Article  PubMed  CAS  Google Scholar 

  15. Freunberger, R., Klimesch, W., Griesmayr, B., et al., “Alpha phase coupling reflects object recognition,” Neuroimage, 42, 928–935 (2008).

    Article  PubMed  Google Scholar 

  16. Hipp, J. F., Engel, A. K., and Siegel, M., “Oscillatory synchronization in large-scale cortical networks predicts perception,” Neuron, 69, No. 2, 387–396 (2011).

    Article  PubMed  CAS  Google Scholar 

  17. Holz, E. M., Glennon, M., Prendergast, K., and Sauseng, P., “Theta-gamma phase synchronization during memory matching in visual working memory,” Neuroimage, 52, 326–335 (2010).

    Article  PubMed  Google Scholar 

  18. Howard M. W., Rizutto, D. S., Caplan, J. B., et al., “Gamma-oscillations correlate with working memory load in humans,” Cereb. Cortex, 13, 1369–1374 (2003).

    Article  PubMed  Google Scholar 

  19. Jacobs, J. and Kahana, M. J., “Neural representations of individual stimuli in humans revealed by gamma-band electrocorticographic activity,” J. Neurosci., 29, 10203–10214 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jensen, O., Kaiser, J., and Lachaux, J. P., “Human gamma-frequency oscillations associated with attention and memory,” Trends Neurosci., 30, 317–324 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. Jin, D. Z., Fuji, N., and Graybiel, A. M., “Neural representation of time in cortico-basal ganglia circuits,” Proc. Natl. Acad. Sci. USA, 106, 19156–19161 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kostandov, E. A. and Cheremushkin, E. A., “Evoked synchronization-desynchronization reactions of cortical electrical activity in the θ and α ranges to the image of a face on increased loading on working memory,” Zh. Vyssh. Nerv. Deyat., 60, No. 6, 718–729 (2010).

    Google Scholar 

  23. Kostandov, E. A. and Cheremushkin, E. A., “Low- and high-frequency oscillations in the EEG α range at individual time segments between significant visual stimuli,” Zh. Vyssh. Nerv. Deyat., 63, No. 6, 687–698 (2013).

    CAS  Google Scholar 

  24. Kostandov, E. A., “Significance of the context of cognitive activity in the formation of an unconscious visual set,” Ros. Fiziol. Zh., 92, No. 2, 164–177 (2006).

    CAS  Google Scholar 

  25. Meck, W. H., Trevor, B. P., and Pounthas, V., “Cortico-striatal representation of time in animals and humans,” Curr. Opin. Neurobiol., 18, 143–152 (2008).

    Article  CAS  Google Scholar 

  26. Minyaeva, N. R., Reflection of the Perception of Illusory Images in Parameters of Brain Bioelectrical Activity in Humans: Auth. Abstr. Mast. Thesis Biol. Sci., Southern Federal Univ., Rostov-on-Don (2010).

    Google Scholar 

  27. Morgan, H. M., Muthukumaraswamy, S. D., Hibbs, C. S., et al., “Feature integration in visual working memory: parietal gamma activity is related to cognitive coordination,” J. Neurophysiol., 106, No. 6, 3185–3194 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sauseng, P., Klimesch, W., Gruber, W. R., and Birbaumer, N., “Crossfrequency phase synchronization: a brain mechanism of memory matching and attention,” Neuroimage, 40, 308–317 (2008).

    Article  PubMed  Google Scholar 

  29. Sokolov, E. N., “The problem of gestalt in neurobiology,” Zh. Vyssh. Nerv. Deyat., 46, No. 2, 229–245 (1996).

    CAS  Google Scholar 

  30. Tallon-Baudry, C., “The roles of gamma-band oscillatory synchrony in human visual cognition,” Front. Biosci., 14, 321–332 (2009).

    Article  Google Scholar 

  31. Tallon-Baudry, C., Bertrand, O., Peronnet, F., and Pernier, J., “Induced gamma-band activity during the delay of a visual short-term memory task in humans,” J. Neurosci., 18, 4244–4255 (1998).

    PubMed  CAS  Google Scholar 

  32. Vidal, J. R., Chaumon, M., O’Regan, J. K., and Tallon-Baudry, C., “Visual grouping and the focusing of attention induced gamma-band oscillations at different frequencies in human magnetoencephalogram signals,” J. Cogn. Neurosci., 18, No. 11, 1850–1862 (2006).

    Article  PubMed  Google Scholar 

  33. Voytek, B., Canolty, R. T., Shestyuk, A., et al., “Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks,” Front. Hum. Neurosci., 4, Article 19, 1–8 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Dumenko.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 64, No. 4, pp. 401–411, July–August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumenko, V.N., Kozlov, M.K. & Cheremushkin, E.A. Power of Evoked γ Responses to a Facial Expression Using an 8-Second Pause between Target and Trigger Stimuli. Neurosci Behav Physi 46, 178–185 (2016). https://doi.org/10.1007/s11055-015-0216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0216-3

Keywords

Navigation