Skip to main content
Log in

Cytogenetic, Molecular-Cytogenetic, and Clinical-Genealogical Studies of the Mothers of Children with Autism: A Search for Familial Genetic Markers for Autistic Disorders

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

State-of-the-art cytogenetic and molecular-cytogenetic methods for studying human chromosomes were used to analyze chromosomal anomalies and variants in mothers of children with autistic disorders and the results were compared with clinical-genealogical data. These investigations showed that these mothers, as compared with a control group, showed increases in the frequencies of chromosomal anomalies (mainly mosaic forms involving chromosome X) and chromosomal heteromorphisms. Analysis of correlations of genotypes and phenotypes revealed increases in the frequencies of cognitive impairments and spontaneous abortions in the mothers of children with autism with chromosomal anomalies, as well as increases in the frequencies of mental retardation, death in childhood, and impairments to reproductive function in the pedigrees of these women. There was a high incidence of developmental anomalies in the pedigrees of mothers with chromosomal variants. These results lead to the conclusion that cytogenetic and molecular-cytogenetic studies of mothers and children with autism should be regarded as obligatory in terms of detecting possible genetic causes of autism and for genetic counseling of families with autistic children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Bashina, Autism in Childhood, [in Russian], Meditsina, Moscow (1999).

    Google Scholar 

  2. S. G. Vorsanova, I. A. Demidova,V. Yu. Ulas, et al, “Cytogenetic and molecular cytogenetic diagnosis of Rett’s syndrome in children,” Zh. Nevrol. Psikhiat., 98, No. 4, 53–56 (1998).

    CAS  Google Scholar 

  3. S. V. Vorsanova and Yu. B. Yurov, “Molecular cytogenetic pre- and postnatal diagnosis of chromosomal pathology,” Vestn. Ros. Akad. Med. Nauk., 11, 12–15 (1999).

    Google Scholar 

  4. S. G. Vorsanov,Yu. B. Yurov, and V. N. Chernyshov, Medical Genetics [in Russian], Medpraktika-M, Moscow (2006).

    Google Scholar 

  5. S. G. Vorsanova, I. Yu. Yurov, I. A. Demidova, et al., “Variability in the heterochromatin regions of chromosomes and chromosomal anomalies in children with autism: identification of genetic markers for autistic disorders,” Zh. Nevrol. Psikhiat., 106, No. 6, 52–57 (2006).

    CAS  Google Scholar 

  6. S. G. Vorsanov, I,Yu. Yurov, I. V. Soloviev, and Yu. B. Yurov, Heterochromatin Regions of Chromosomes in Humans: Clinical-Biological Aspects [in Russian], Medpraktika-M, Moscow (2008).

    Google Scholar 

  7. N. L. Gorbachevskaya and L. P. Yakupova, “Characteristics of the EEG pattern in children with different types of autistic disorders,” in: Autism in Childhood [in Russian], Meditsina, Moscow (1999), pp. 131–170.

    Google Scholar 

  8. I. A. Demidova and S. G. Vorsanova, “Cytological and molecular polymorphism in human chromosomes,” Med. Genetika Eksperim. Info., 12, 1–8 (1990).

    Google Scholar 

  9. A. A. Prokofieva-Belgovskaya, Heterochromatin Regions of Chromosomes [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  10. I. V. Soloviev,Yu. B. Yurov, S. G. Vorsanov, et al., “Studies of alphasatellite DNA in cosmid libraries specific for chromosomes 13, 21, and 22 using in situ fluorescent hybridization,” Genetika, 11, 1470–1479 (1998).

    Google Scholar 

  11. Yu. B. Yurov and S. G. Vorsanov, “Molecular cytogenetic studies of chromosomal anomalies and impairments in neuromental diseases: the search for biological markers for diagnosis,” Vestn. Ros. Akad. Med. Nauk., 7, 26–31 (2001).

    Google Scholar 

  12. I. Yu. Yurov, S. G. Vorsanov, and Yu. B. Yurov, “Nervous and mental diseases in children and mutations in the MECP2 regulatory gene,” Zh. Nevrol. Psikhiat., 10, 73–80 (2004).

    Google Scholar 

  13. I. Yu. Yurov, S. G. Vorsanov, V. Yu. Voinova-Ulas, et al., “Epigenetic studies of Rett syndrome as a suitable model for autistic disorders,” Zh. Nevrol. Psikhiat., 105, No. 7, 4–11 (2005).

    Google Scholar 

  14. I. Yu. Yurov, S. G. Vorsanov, and Yu. B. Yurov, “Mental fatigue linked with the X chromosome, epigenetic phenomena, and autism,” Psikhiatriya, 13, No. 1, 55–65 (2005).

    Google Scholar 

  15. I. Yu. Yurov, S. G. Vorsanov, and Yu. B. Yurov, “Molecular neurocytogenetics: genome instability in mental diseases,” Psikhiatriya, 28, No. 4, 36–43 (2007).

    Google Scholar 

  16. H. Asperger, “Die ‘autistischen Psychopathen’ im Kindesalter,” Arch. Psychiat. Nervenkr., 117, 76–136 (1944).

    Article  Google Scholar 

  17. E. Bacchelli, F. Blasi, M. Biondillo, et al., “International molecular genetic study of autism consortium (IMGSAC). Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the cAMP-GEFII gene,” Mol. Psychiat., 8, No. 11, 916–924 (2003).

    Article  CAS  Google Scholar 

  18. E. Bleuler, “Das autistische Denken,” in: Jahrbuch für Psychoanalytische und Psychopathologische Forschungen, Deuticke, Leipzig and Vienna (1912), Vol. 4, pp. 1–39.

  19. D. Castermans, V. Willquet, J. Steyert, et al., “Chromosomal anomalies in individuals with autism: a strategy towards the identification of genes involved in autism,” Autism, 8, 141–161 (2004).

    Article  PubMed  Google Scholar 

  20. C. M. Freitag, “The genetics of autistic disorders and its clinical relevance: a review of the literature,” Mol. Psychiatr., 12, No. 1, 2–22 (2007).

    Article  CAS  Google Scholar 

  21. D. Goldberg, K. Bridges, P. Duncan-Jones, and D. Grayson, “Detecting anxiety and depression in general medical settings,” Brit. Med. J., 297, 897–899 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. A. Halder, M. Jain, M. Kabra, and N. Gupta, “Mosaic 22q11.2 microdeletion syndrome: diagnosis and clinical manifestations of two cases,” Mol. Cytogenet., 1, 18 (2008).

    Article  PubMed  CAS  Google Scholar 

  23. J. R. Hughes, “A review of recent reports on autism: 1000 studies published in 2007,” Epilepsy Behav., 13, No. 3, 425–437 (2008).

    Article  PubMed  Google Scholar 

  24. I. Y. Iourov, I. V. Soloviev, S. G. Vorsanova, et al., “An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics,” J. Histochem. Cytochem., 53, 401–408 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. I. Y. Iourov, S. G. Vorsanova, and Y. B. Yurov, “Chromosomal variations in mammalian neural cells: known facts and attractive hypotheses,” Int. Rev. Cytol., 249, 143–191 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. I. Y. Iourov, S. G. Vorsanova, and Y. B. Yurov, “Intercellular genomic (chromosomal) variations resulting in somatic mosaicism: mechanisms and consequences,” Curr. Genomics, 7, 435–446 (2006).

    Article  CAS  Google Scholar 

  27. I. Y. Iourov, S. G. Vorsanova, and Y. B. Yurov, “Molecular cytogenetics and cytogenomics of brain diseases,” Curr. Genomics, 7, No. 9, 452–465 (2008).

    Article  Google Scholar 

  28. I. Y. Iourov, S. G. Vorsanova, and Y. B. Yurov, “Chromosomal mosaicism goes global,” Mol. Cytogenet., 1, 26 (2008).

    Article  PubMed  CAS  Google Scholar 

  29. I. Y. Yourov, Y. B. Yurov, and S. G. Vorsanova, “Mosaic X chromosome aneuploidy can help to explain the male-to-female ratio in autism,” Med. Hypotheses, 70, 464 (2008).

    Article  Google Scholar 

  30. L. Kanner, “Autistic disturbances of affective contact,” Nerv. Child, 2, 217–250 (1943).

    Google Scholar 

  31. R. Muhle, S. V. Trentacoste, and I. Rapin, “The genetics of autism,” Pediatrics, 113, No. 5, e472–486 (2004).

    Article  PubMed  Google Scholar 

  32. P. T. Ozand, A. Al-Odaib, H. Merza, and A. Al Harbi, “Autism: a review,” J. Pediat. Neurol., 1, 55–67 (2003).

    CAS  Google Scholar 

  33. I. Rapin, “Autism,” New Eng. J. Med., 337, 97–104 (1997).

    Article  PubMed  CAS  Google Scholar 

  34. I. Rapin and R. F. Tuchman, “Autism: definition, neurobiology, screening, diagnosis,” Pediat. Clin. North Am., 55, No. 5, 1129–1146 (2008).

    Article  Google Scholar 

  35. I. V. Soloviev, Y. B. Yurov, S. G. Vorsanova, and P. Malet, “Microwave activation of fluorescence in situ hybridization: a novel method for rapid chromosome detection and analysis,” Focus, 16, 115–116 (1994).

    Google Scholar 

  36. S. G. Vorsanova, I. A. Demidova, V. Y. Ulas, et al., “Cytogenetic and molecular-cytogenetic investigation of Rett syndrome. Analysis of 31 cases,” NeuroReport, 7, 187–189 (1996).

    Article  Google Scholar 

  37. S. G. Vorsanova, I. Y. Yourov, and Yurov, “Neurological, genetic and epigenetic features of Rett syndrome,” J. Pediat. Neurol., 2, 179–190 (2004).

    CAS  Google Scholar 

  38. S. G. Vorsanova, I. Y. Yurov, I. A. Demidova, et al., “Variability in the heterochromatin regions of the chromosomes and chromosomal anomalies in children with autism: identification of genetic markers of autistic spectrum disorders,” Neurosci. Behav. Physiol., 37, No. 6, 553–558 (2007).

    Article  PubMed  CAS  Google Scholar 

  39. S. G. Vorsanova, I. Y. Yourov, V. Y. Voinova, et al., “Partial monosomy 7q34-qter and 21pter-q22.13 due to cryptic unbalanced translocation t(7; 21) but not monosomy of the whole chromosome 21: a case report plus review of the literature,” Mol. Cytogenet., 1, 13 (2008).

    Article  PubMed  CAS  Google Scholar 

  40. J. A. Vorstman, M. E. Morcus, S. N. Duijff, et al., “The 22qll.2 deletion in children: high rate of autistic disorders and early onset of psychotic symptoms,” J. Am. Acad. Child. Adolesc. Psychiat., 45, No. 9, 1104–1113 (2006).

    Article  Google Scholar 

  41. J. Xu, L. Zwaigenboum, P. Szatmari, et al., “Molecular cytogenetics of autism,” Curr. Genomics, 4, 347–368 (2004).

    Article  Google Scholar 

  42. Y. B. Yurov, I. V. Soloviev, S. G. Vorsanova, et al., “DNA probes for pre- and postnatal diagnosis of chromosomal anomalies: a collection for FISH analysis,” Cesk. Pediat., 52, 550–554 (1997).

    Google Scholar 

  43. Y. B. Yurov, S. G. Vorsanova, I. Y. Iourov, et al., “Unexplained autism is frequently associated with low-level mosaic aneuploidy,” J. Med. Genet., 44, 521–525 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Yurov.

Additional information

Translated from Zhurnal Nevrologii i Psikhatrii imeni S. S. Korsakova, Vol. 109, No. 6, pp, 54–64, June, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorsanova, S.G., Voinova, V.Y., Yurov, I.Y. et al. Cytogenetic, Molecular-Cytogenetic, and Clinical-Genealogical Studies of the Mothers of Children with Autism: A Search for Familial Genetic Markers for Autistic Disorders. Neurosci Behav Physi 40, 745–756 (2010). https://doi.org/10.1007/s11055-010-9321-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-010-9321-5

Key words

Navigation