Skip to main content
Log in

Selective Impairments to Memory Consolidation in Chicks Produced by 5′-Iodo-2′-Deoxyuridine

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The aim of the present work was to study the role of DNA synthesis in the formation of different types of memory in neonatal chicks. The nucleotide analogs 5′-iodo-2′-deoxyuridine (IdU) and 5′-bromo-2′-deoxyuridine (BrdU) were used; these are incorporated into DNA, impairing its function, and have amnestic actions in defined models of learning in mice. We studied the effects of 5′-iodo-2′-deoxyuridine of the formation of long-term memory in chicks during training in different models: passive avoidance, imprinting, taste aversion, and spatial learning in a maze. In the taste aversion model, i.p. administration of IdU (10 mg/kg 5 min before or 50 min after training) had an amnestic effect on testing 1–2 days after training. IdU-induced amnesia developed more than 6 h after training, while administration of IdU 2 h after training had no amnestic effect. 5′-Bromo-2′-deoxyuridine also had a similar amnestic action in the taste aversion model. In the passive avoidance, imprinting, and spatial maze learning models, administration of IdU at the same dose before and after training did not induce amnesia. These data lead to the suggestion that DNA synthesis in the brain may play a critical role in the mechanisms of memory consolidation in chicks in types of learning such as taste aversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. V. Anokhin, “Molecular scenarios of the consolidation of longterm memory,” Zh. Vyssh. Nerv. Deyat., 47, 261–279 (1997).

    CAS  Google Scholar 

  2. K. V. Anokhin, N. A. Belotserkovskaya, and A. A. Kraevskii, “Impairments to long-term memory in mice treated with azidothymidine,” Byull. Éksperim. Biol. Med., 8, 144–145 (1988).

    Google Scholar 

  3. V. V. Ashapkin, G. A. Romanov, N. A. Tushmanova, and B. F. Vanyushin, “Induction of DNA synthesis in the rat brain during learning,” Nauchn. Dokl. Vysshei Shkoly, 11, 30–34 (1981).

    Google Scholar 

  4. V. V. Ashapkin, G. A. Romanov, N. A. Tushmanova, and B. F. Vanyushin, “Learning-induced selective DNA synthesis in the rat brain,” Biokhimiya, 48, No. 3, 355–362 (1983).

    CAS  Google Scholar 

  5. N. V. Komissarova and K. V. Anokhin, “Effects of an imprinting procedure on cell proliferation in the chick brain,” Zh. Vyssh. Nerv. Deyat., 57, No. 2, 196–205 (2007).

    Google Scholar 

  6. K. A. Radyushkin and K. V. Anokhin, “Recovery of memory in chicks impaired by learning: reversibility of amnesia induced by protein synthesis inhibitors,” Ros. Fiziol. Zh. 83, 11–18 (1997).

    Google Scholar 

  7. T. A. Barber, A. M. Klunk, P. D. Howarth, M. F. Pearlman, and K. E. Patrick, “A new look at an old task: advantages and uses of sickness-conditioned learning in day-old chicks,” Pharmacol. Biochem. Behav., 60, No. 2, 423–430 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. E. Bruel-Jungerman, C. Rampon, and S. Laroche, “Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses,” Rev. Neurosci., 18, No. 2, 93–114 (2007).

    CAS  PubMed  Google Scholar 

  9. D. F. Clayton, “The genomic action potential,” Neurobiol. Learn. Mem., 74, 185–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. M. Colon-Cesario, J. Wang, X. Ramos, H. G. Garcia, J. J. Davila, J. Laguna, C. Rosado, and S. Pena de Ortiz, “An inhibitor of DNA recombination blocks memory consolidation, but not reconsolidation, in context fear conditioning,” J. Neurosci., 26, No. 20, 5524–5533 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. C. R. Dermon, B. Zikopoulos, L. Panagis, E. Harrison, C. L. Lancashire, R. Mileusnic, and M. G. Stewart, “Passive avoidance training enhances cell proliferation in 1-day-old chicks,” Eur. J. Neurosci., 16, 1267–1274 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. J. Garcia, W. G. Hankins, and K. W. Rusiniak, “Behavioral regulation of the milieu interne in man and rat,” Science, 185, No. 4154, 824–831 (1974).

    Article  CAS  PubMed  Google Scholar 

  13. J. Garcia, P. S. Lasiter, F. Bermudez-Rattoni, and D. A. Deems, “A general theory of aversion learning,” Ann. N.Y. Acad. Sci., 443, 8–21 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. A. Giuditta, C. Perrone Capano, G. D’Onofrio, C. Toniatti, T. Menna, and H. Hyden, “Synthesis of rat brain DNA during acquisition of an appetitive task,” Pharmacol. Biochem. Behav., 25, No. 3, 651–658 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. B. Goz, “The effects of incorporation of 5-halogenated deoxyuridines into the DNA of eukaryotic cells,” Pharmacol. Rev., 29, No. 4, 249–272 (1977).

    CAS  PubMed  Google Scholar 

  16. J. F. Guzowski, “Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches,” Hippocampus, 12, 86–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. I. Izquierdo, L. R. Bevilaqua, J. I. Rossato, J. S. Bonini, J. H. Medina, and M. Cammarota, “Different molecular cascades in different sites of the brain control memory consolidation,” Trends Neurosci., 29, No. 9, 496–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. G. M. Martin and W. P. Bellingham, “Learning of visual food aversions by chickens (Gallus gallus) over long delays,” Behav. Neural. Biol., 25, No. 1, 58–78 (1979).

    Article  CAS  PubMed  Google Scholar 

  19. B. J. McCabe, G. Horn, and P. P. Bateson, “Effects of restricted lesions of the chick forebrain on the acquisition of filial preferences during imprinting,” Brain Res., 205, No. 1, 29–37 (1981).

    Article  CAS  PubMed  Google Scholar 

  20. C. A. Miller and J. D. Sweatt, “Covalent modification of DNA regulates memory formation,” Neuron, 53, No. 6, 857–869 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. F. Nottebohm, “Why are some neurons replaced in adult brain?” J. Neurosci., 22, No. 3, 624–628 (2002).

    CAS  PubMed  Google Scholar 

  22. S. Reinis, “Autoradiographic study of 3H-thymidine incorporation into brain DNA during learning,” Physiol. Chem. Phys., 4, No. 4, 391–397 (1972).

    CAS  PubMed  Google Scholar 

  23. S. Reinis, J. Abbott, and J. J. Clarke, “Brain DNA changes during learning studied by administration of 5′-iodo-2′-deoxyuridine,” Physiol. Chem. Phys., 4, No. 5, 440–448 (1972).

    CAS  PubMed  Google Scholar 

  24. S. P. R. Rose, “Cell adhesion molecules, glucocorticoids and memory,” Trends Neurosci., 18, 502–506 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. T. J. Shors, D. A. Townsend, M. Zhao,Y. Kozorovitskiy, and E. Gould, “Neurogenesis may relate to some but not all types of hippocampaldependent learning,” Hippocampus, 12, No. 5, 578–584 (2002).

    Article  PubMed  Google Scholar 

  26. L. R. Squire and S. H. Barondes, “Variable decay of memory and its recovery in cycloheximide-treated mice,” Proc. Natl. Acad. Sci. USA, 69, No. 6, 1416–1420 (1972).

    Article  CAS  PubMed  Google Scholar 

  27. J. Wang, K. Ren, J. Perez, A. J. Silva, and S. Pena de Ortiz, “The antimetabolite ara-CTP blocks long-term memory of conditioned taste aversion,” Learn. Mem., 10, No. 6, 503–509 (2003).

    Article  PubMed  Google Scholar 

  28. I. C. Weaver, N. Cervoni, F. A. Champagne, A. C. D’Alessio, S. Sharma, J. R. Seckl, S. Dymov, M. Szyf, and M. J. Meaney, “Epigenetic programming by maternal behavior,” Nat. Neurosci., 7, No. 8, 847–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. H. C. Wilcoxon, W. B. Gradoin, and P. A. Kral, “Illness-induced aversions in rat and quail: relative salience of visual and gustatory cues,” Science, 71, No. 973, 826–828 (1971).

    Article  Google Scholar 

  30. G. Winocur, J. M. Wojtowicz, M. Sekeres, J. S. Snyder, and S. Wang, “Inhibition of neurogenesis interferes with hippocampus-dependent memory function,” Hippocampus, 16, No. 3, 296–304 (2006).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Komissarova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 58, No. 6, pp. 700–710, November–December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komissarova, N.V., Tiunova, A.A. & Anokhin, K.V. Selective Impairments to Memory Consolidation in Chicks Produced by 5′-Iodo-2′-Deoxyuridine. Neurosci Behav Physi 40, 215–223 (2010). https://doi.org/10.1007/s11055-009-9237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-009-9237-0

Key words

Navigation