Skip to main content
Log in

Studies of the molecular mechanisms of action of relaxin on the adenylyl cyclase signaling system using synthetic peptides derived from the LGR7 relaxin receptor

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The peptide hormone relaxin produces dose-dependent stimulation of adenylyl cyclase activity in rat tissues (striatum, cardiac and skeletal muscle) and the muscle tissues of invertebrates, i.e., the bivalve mollusk Anodonta cygnea and the earthworm Lumbricus terrestris, adenylyl cyclase stimulation being more marked in the rat striatum and cardiac muscle. Our studies of the type of relaxin receptor involved in mediating these actions of relaxin involved the first synthesis of peptides 619–629, 619–629-Lys(Palm), and 615–629, which are derivatives of the primary structure of the C-terminal part of the third cytoplasmic loop of the type 1 relaxin receptor (LGR7). Peptides 619–629-Lys(Palm) and 615–629 showed competitive inhibition of adenylyl cyclase stimulation by relaxin in rat striatum and cardiac muscle but had no effect on the action of relaxin in rat skeletal muscle or invertebrate muscle, which is evidence for the tissue and species specificity of their actions. On the one hand, this indicates involvement of the LGR7 receptor in mediating the adenylyl cyclase-stimulating action of relaxin in rat striatum and cardiac muscle and, on the other, demonstrates the existence of other adenylyl cyclase signal mechanisms for the actions of relaxin in rat skeletal muscle and invertebrate muscle, not involving LGR7 receptors. The adenylyl cyclase-stimulating effect of relaxin in the striatum and cardiac muscles was found to be decreased in the presence of C-terminal peptide 385–394 of the αs subunit of the mammalian G protein and to be blocked by treatment of membranes with cholera toxin. These data provide evidence that in the striatum and cardiac muscle, relaxin stimulates adenylyl cyclase via the LGR7 receptor, this being functionally linked with Gs protein. It is also demonstrated that linkage of relaxin-activated LGR7 receptor with the Gs protein is mediated by interaction of the C-terminal half of the third cytoplasmic loop of the receptor with the C-terminal segment of the αs subunit of the G protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. O. Shpakov, “Molecular determinants in serpantine-type receptors responsible for their functional linkage with heterotrimeric G proteins,” Tsitologiya, 44, No. 3, 242–258 (2002).

    CAS  Google Scholar 

  2. A. O. Shpakov, “Involvement of charged amino acid residues in the cytoplasmic loops of serpantine-type receptors in the process of transmission of the hormonal signal,” Zh. Évolyuts. Biokhim. Fiziol., 39, No. 3, 205–217 (2003).

    CAS  Google Scholar 

  3. A. O. Shpakov, I. A. Gur’yanov, L. A. Kuznetsova, S. A. Plesneva, V. I. Korol’kov, M. N. Pertseva, and G. P. Vlasov, “Use of C-terminal peptides of the α subunits of G proteins to investigate their functional linkage with biogenic amine receptors in rat and mollusk tissues,” Biol. Membrany, 21, No. 6, 441–450 (2004).

    Google Scholar 

  4. A. O. Shpakov, L. A. Kuznetsova, S. A. Plesneva, and M. N. Pertseva, “The involvement of phosphatidylinositol-3-kinase and protein kinase Cξ in the adenylyl cyclase signal mechanism of the action of relaxin in rat and mollusk muscle tissues,” Byull. Éksperim. Biol. Med., 138, No. 10, 420–423 (2004).

    Google Scholar 

  5. A. O. Shpakov and M. N. Pertseva, “Use of a peptide strategy to investigate the molecular mechanisms of hormonal signal transmission in cells,” Zh. Évolyuts. Biokhim. Fiziol., 41, No. 5, 389–403 (2005).

    CAS  Google Scholar 

  6. A. O. Shpakov, M. N. Pertseva, I. A. Gur’yanov, and G. P. Vlasov, “The effects of peptides derived from the third cytoplasmic loop of the type 1 relaxin receptor on the stimulation of the GTP-binding activity of G proteins by relaxin,” Biol. Membrany, 22, No. 6, 435–442 (2005).

    Google Scholar 

  7. A. O. Shpakov, S. A. Plesneva, K. A. Kuznetsova, and M. N. Pertseva, “Studies of the functional organization of a new adenylyl cyclase signal mechanism of action of insulin,” Biokhimiya, 67, No. 3, 403–412 (2002).

    Google Scholar 

  8. S. Albrizio, A. D’Ursi, C. Fattorusso, C. Galoppini, G. Greco, M. R. Mazzoni, E. Novellino, and P. Rovero, “Conformational studies on a synthetic C-terminal fragment of the α subunit of Gs proteins,” Biopolymers, 54, 186–194 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. D. Bani, “Relaxin: a pleiotropic hormone,” Gen. Pharmacol., 28, 13–22 (1997).

    PubMed  CAS  Google Scholar 

  10. O. Bartsch, B. Bartlick, and R. Ivell, “Relaxin signaling links tyrosine phosphorylation to phosphodiesterase and adenylyl cyclase activity,” Mol. Hum. Report, 7, 799–809 (2001).

    Article  CAS  Google Scholar 

  11. L. Covic, A. L. Gresser, J. Talavera, S. Swift, and A. Kuliopolos, “Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides,” Proc. Natl. Acad. Sci. USA, 99, 643–648 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. H. Demene, S. Granier, D. Muller, G. Guillon, M. N. Dufour, M. A. Delsuc, M. Hibert, R. Pascal, and C. Mendre, “Active peptidic mimics of the second intracellular loop of the V1A vasopressin receptor are structurally related to the second intracellular rhodopsin loop: a combined 1H NMR and biochemical study,” Biochemistry, 42, 8204–8213 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. S. Granier, S. Terrillon, R. Pascal, M. Bouvier, G. Guillon, and C. Mendre, “Acyclic peptide mimicking the third intracellular loop of the V2 vasopressin receptor inhibits signaling through its interaction with receptor dimmer and G protein,” J. Biol. Chem., 279, 50904–50914 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. J. M. Gunnersen, P. Fu, P. J. Roche, and G. W. Tregear, “Expression of human relaxin genes: characterization of a novel alternatively-spliced human relaxin mRNA species,” Mol. Cell. Endocrinol., 118, 85–94 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. F. Hajos, “An improved method for the preparation of synaptosomal fractions in high purity,” Brain Res., 93, 485–489 (1975).

    Article  PubMed  CAS  Google Scholar 

  16. M. L. Halls, R. A. Bathgate, and R. J. Summers, “Signal switching after stimulation of LGR7 receptors by human relaxin 2,” Ann. N.Y. Acad. Sci., 1041, 288–291 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. S. Y. Hsu, “New insights into the evolution of the relaxin-LGR signaling system,” Trends Endocrinol. Metabolism., 14, 303–309 (2003).

    Article  CAS  Google Scholar 

  18. S. Y. Hsu, M. Kudo, T. Chen, K. Nakabayashi, A. Bhalla, P. J. van der Spek, M. van Duin, and A. J. Hsueh, “The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7,” Mol. Endocrinol., 14, 1257–1271 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. S. Y. Hsu, K. Nakabayashi, S. Nishi, J. Kumagai, M. Kudo, O. D. Sherwood, and A. J. Hsueh, “Activation of orphan receptors by the hormone relaxin,” Science, 295, 671–674 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. S. Y. Hsu, J. Semyonov, J. I. Park, and C. L. Chang, “Evolution of the signaling system in relaxin-family peptides,” Ann. N.Y. Acad. Sci., 1041, 520–529 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. P. Hudson, M. John, R. Crawford, J. Haralambidis, D. Scanlon, J. Gorman, G. Tregear, J. Shine, and H. Niall, “Relaxin gene expression in human ovaries and the predicted structure of a human preprorelaxin by analysis of cDNA clones,” EMBO J., 3, 2333–2339 (1984).

    PubMed  CAS  Google Scholar 

  22. R. Ivell and A. Einspanier, “Relaxin peptides are new global players,” Trends Endocrinol. Metabolism., 13, 343–348 (2002).

    Article  CAS  Google Scholar 

  23. K. Kawamura, S. Sudo, J. Kumagai, M. Pisarska, S. Y. Hsu, R. Bathgate, J. Wade, and A. J. Hsueh, “Relaxin research in the postgenomic era,” Ann. N.Y. Acad. Sci., 1041, 1–7 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. A. M. Kidwai, M. A. Radcliffe, E. Y. Lee, and E. E. Daniel, “Isolation and properties of skeletal muscle membranes,” Biochem. Biophys Acta, 298, 593–607 (1973).

    Article  PubMed  CAS  Google Scholar 

  25. R. D. Koos and S. B. Pillai, “Intersection of the relaxin and estrogen signaling pathways in the uterus,” in: Relaxin-2000, G. W. Tregear, R. Ivell, R. A. Bathgate, and J. D. Wade (eds.), Kluwer Academic Publishers, Dordrecht, Boston, London (2001), pp. 101–108.

    Google Scholar 

  26. S. Kosugi, F. Okajima, and T. Ban, “Mutation of alanine 623 in the third cytoplasmic loop of the rat thyrotropin (TSH) receptor results in a loss in the phosphoinositide but not cAMP signal induced by TSH and receptor autoantibodies,” J. Biol. Chem., 267, 24153–24156 (1992).

    PubMed  CAS  Google Scholar 

  27. L. Kuznetsova, S. Plesneva, N. Derjabina, E. Omeljaniuk, and M. Pertseva, “On the mechanism of relaxin action: the involvements of adenylyl cyclase signaling system,” Regul. Pept., 80, 33–39 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. L. Kuznetsova, S. Plesneva, A. Shpakov, and M. Pertseva, “Functional defects in insulin and relaxin adenylyl cyclase signaling systems in myometrium of pregnant women with type 1 diabetes,” Ann. N.Y. Acad. Sci., 1041, 446–448 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. L. Kuznetsova, A. Shpakov, Yu. Rusakov, S. Plesneva, V. Bondareva, and M. Pertseva, “Comparative study of biological activity of insulins of lower vertebrates in the novel adenylyl cyclase test-system,” Regul. Pept., 116, 81–86 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. C. Liu, P. Bonaveture, S. W. Sutton, J. Chen, C. Kuei, D. Nepomuceno, and T. W. Lovenberg, “Recent progress in relaxin-3-related research,” Ann. N.Y. Acad. Sci., 1041, 47–60 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. C. Lu, H. N. Lam, and R. K. Menon, “New members of the insulin family: regulators of metabolism, growth and now reproduction,” Pediatr. Res., 57, 70–73 (2005).

    Article  Google Scholar 

  32. T. Morizumi, H. Imai, and Y. Shichida, “Two-step mechanism of interaction of rhodopsin intermediates with the C-terminal region of the transducin α-subunit,” J. Biochem. (Tokyo), 134, 259–267 (2003).

    CAS  Google Scholar 

  33. M. Natochin, M. Moussaif, and N. O. Artemyev, “Probing the mechanism of rhodopsin-catalyzed transduction activation,” J. Neurochem., 77, 202–210 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. M. Natochin, K. G. Muradov, R. L. McEntaffer, and N. O. Artemyev, “Rhodopsin recognition by mutant Gas containing C-terminal residues of transducin,” J. Biol. Chem., 275, 2669–2675 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. B. T. Nguyen and C. W. Dessauer, “Relaxin stimulates protein kinase Czeta translocation: requirement for cyclic adenosine 3′,5′-monophosphate production,” Mol. Endocrinol., 19, 1012–1023 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. B. T. Nguyen, L. Yang, B. M. Sanborn, and C. W. Dessauer, “Phosphatidylinositol 3-kinase activity is required for biphasic stimulation of cyclic adenosine 3′,5′-monophosphate by relaxin,” Mol. Endocrinol., 17, 1075–1084 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. M. N. Pertseva S. A. Plesneva, A. O. Shpakov, Yu. I. Rusakov, and L. A. Kuznetsova, “Involvement of adenylyl cyclase signaling system in the action of insulin and mollusc insulin-like peptide,” Comp. Biochem. Physiol., 112, 689–695 (1995).

    Article  CAS  Google Scholar 

  38. M. N. Pertseva, A. O. Shpakov, S. A. Plesneva, and L. A. Kuznetsova, “A novel view on the mechanisms of action of insulin and other insulin superfamily peptides: involvement of adenylyl cyclase signaling system,” Comp. Biochem. Physiol., 134, 11–36 (2003).

    CAS  Google Scholar 

  39. S. A. Plesneva, A. O. Shpakov, L. A. Kuznetsova, and M. N. Pertseva, “A dual role of protein kinase ‘C’ in insulin signal transduction via adenylyl cyclase signaling system in muscle tissues of vertebrates and invertebrates,” Biochem. Pharmacol., 61, 1277–1291 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. Y. Salomon, C. London, and M. A. Rodbell, “Highly sensitive adenylate cyclase assay,” Anal. Biochem., 58, 541–548 (1974).

    Article  PubMed  CAS  Google Scholar 

  41. B. M. Sanborn, K. L. Dodge, C. Yue, and C. Y. Ke, “Relaxin and scaffolding proteins in signaling cross-talk,” in: Relaxin-2000, G. W. Tregear, R. Ivell, R. A. Bathgate, and J. D. Wade (eds.), Kluwer Academic Publishers, Dordrecht, Boston, London (2001), pp. 279–283.

    Google Scholar 

  42. O. D. Sherwood, “Relaxin,” in: The Physiology of Reproduction, E. Knobil and J. D. Neill (eds.), Rave Press (1994), pp. 861–1009.

  43. A. O. Shpakov, V. I. Korolkov, S. A. Plesneva, L. A. Kuznetsova, and M. N. Pertseva, “Effects of the C-terminal peptide of the as subunit of the G protein on the regulation of adenylyl cyclase and protein kinase A activities by biogenic amines and glucagon in mollusk and rat muscles,” Neurosci. Behav. Physiol., 35, 177–186 (2005).

    Article  PubMed  CAS  Google Scholar 

  44. A. Shpakov, M. Pertseva, L. Kuznetsova, and S. Plesneva, “A novel, adenylyl cyclase, signaling mechanism (ACSM) of relaxin H2 action,” Ann. N.Y. Acad. Sci., 1041, 305–307 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. A. O. Shpakov, V. N. Shipilov, and V. M. Bondareva, “Sensitivity of adenylyl cyclase signaling system of the mollusk A. cygnea ganglions to serotonin and adrenergic agonists,” Ann. N.Y. Acad. Sci., 1040, 466–468 (2005).

    Article  PubMed  CAS  Google Scholar 

  46. J. W. Winslow, A. Shih, J. H. Bourell, G. Weiss, B. Reed, J. T. Shults, and L. T. Goldsmith, “Human seminal relaxin is a product of the same gene as human luteal relaxin,” Endocrinology, 130, 2660–2668 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 92, No. 5, pp. 521–535, May, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shpakov, A.O., Gur’yanov, I.A., Kuznetsova, L.A. et al. Studies of the molecular mechanisms of action of relaxin on the adenylyl cyclase signaling system using synthetic peptides derived from the LGR7 relaxin receptor. Neurosci Behav Physiol 37, 705–714 (2007). https://doi.org/10.1007/s11055-007-0071-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-007-0071-y

Key words

Navigation