Skip to main content
Log in

Effects of high-potassium solutions and caffeine on synaptic vesicle exoendocytosis processes in the frog neuromuscular junction

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Studies on frog skin-pectoris muscle preparations using vital fluorescent microscopy showed that stimulation of transmitter secretion using high-potassium solutions with the endocytosis marker FM 1–43 induced bright spots in all motor nerve terminals, these representing accumulations of vesicles undergoing the exoendocytic cycle in the active zones of nerve endings. Stimulation of transmitter secretion with caffeine evoked bright spots only in some nerve terminals and only in some parts of the terminals. In summer, the number of bright spots on stimulation of transmitter secretion by caffeine increased sharply. Extracellular recording of spontaneous synaptic signals showed that high-potassium solutions, like caffeine, produced dose-dependent increases in the frequency of miniature endplate currents. However, while high-potassium solutions always increased the frequency, this occurred with caffeine in only a proportion of experiments. This leads to the conclusion that exoendocytosis processes can occur both because of the influx of Ca2+ ions into nerve endings as a result of depolarization (high-potassium solutions) and because of the release of Ca2+ ions from the endoplasmic reticulum (caffeine). The possible spatial localization of the endoplasmic reticulum in nerve endings is discussed. The endoplasmic reticulum is suggested to have a role in synapse remodeling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. P. Balezina, “Role of intracellular calcium channels of nerve terminals in the regulation of mediator secretion,” Usp. Fiziol. Nauk., 33, 38–56 (2002).

    PubMed  CAS  Google Scholar 

  2. A. L. Zefirov, M. M. Abdrakhmanov, and P. N. Grigor’ev, “The ‘kiss-and-run’ mechanism for the quantum secretion of transmitter in the frog neuromuscular synapse,” Byull. Éksperim. Biol. Med., 137, No. 2, 124–128 (2004).

    Article  Google Scholar 

  3. A. L. Zefirov, N. P. Grigor’ev, A. M. Petrov, M. G. Minlebaev, and G. F. Sitdikova, “Vital fluorescent studies of frog motor nerve endings using the endocytotic marker FM1-43,” Tsitologiya, 45, No. 12, 34–40 (2003).

    Google Scholar 

  4. A. L. Zefirov and G. F. Sitdikova, “Nerve ending ion channels,” Usp. Fiziol. Nauk., 33, No. 4, 1–33 (2002).

    Google Scholar 

  5. A. L. Zefirov and S. Yu. Cheranov, “The molecular mechanisms of the quantum secretion of transmitters in synapses,” Usp. Fiziol. Nauk., 31, No. 3, 3–22 (2000).

    PubMed  CAS  Google Scholar 

  6. J. K. Angleson and W. J. Betz, “Intraterminal Ca2+ and spontaneous transmitter release at the frog neuromuscular junction,” J. Neurophysiol., 85, 287–294 (2001).

    PubMed  CAS  Google Scholar 

  7. T. Avidor, E. Clementi, L. Schwartz, and D. Atlas, “Caffeine-induced transmitter release is mediated via ryanodine-sensitive channel,” Neurosci. Lett., 165, 133–136 (1974).

    Article  Google Scholar 

  8. W. J. Betz and G. S. Bewick, “Optical monitoring of transmitter release and synaptic vesicle at recycling at the frog neuromuscular junction,” J. Physiol. (London), 460, 287–309 (1993).

    CAS  Google Scholar 

  9. W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol., 6, 365–371 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. B. Ceccarelli, F. Grohovaz, and W. P. Hurlbut, “Freeze-facture studies of frog neuromuscular junctions during intense release of neurotransmitter. II. Effects of electrical stimulation and high potassium,” J. Cell. Biol., 81, 178–192 (1979).

    Article  PubMed  CAS  Google Scholar 

  11. M. I. Glavinovic, “Changes in miniature end-plate currents due to high potassium and calcium at the frog neuromuscular junction,” Synapse, 2, 636–643 (1988).

    Article  PubMed  CAS  Google Scholar 

  12. Y. Goda and T. C. Sudhov, “Calcium regulation of neurotransmitter release: reliably unreliable?” Curr. Opin. Cell Biol., 9, 513–518 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. J. E. Heuser and J. E. Reese, “Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction,” J. Cell. Biol., 57, 315–344 (1973).

    Article  PubMed  CAS  Google Scholar 

  14. A. Martinez-Serrano and J. Satrustegui, “Caffeine-sensitive calcium stores in presynaptic nerve endings: a physiological role,” Biochem. Biophys. Res. Commun., 161, No. 3, 965–971 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. K. Onodera, “Effect of caffeine on the neuromuscular junction of the frog and its relation to external calcium concentration,” Jap. J. Physiol., 23, 587–597 (1973).

    CAS  Google Scholar 

  16. R. Pezzati and F. Grohovaz, “The frog neuromuscular junction revisited after quick-freezing-freeze-drying: ultrastructure, immunogold labeling and high resolution calcium mapping,” Phil Trans. Roy. Soc. Lond., B354, 373–378 (1999).

    Article  Google Scholar 

  17. R. Rizzuto, “Intracellular Ca pools in neuronal signalling,” Curr. Opin. Neurobiol., 11, 306–311 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. S. J. Royle and L. Lagnado, “Endocytosis at the synaptic terminal,” J. Physiol., 553, No. 2, 345–355 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. W. van der Kloot and J. Molgo, “Quantal acetylcholine release at the vertebrate neuromuscular junction,” Physiol. Rev., 74, 899–901 (1994).

    PubMed  Google Scholar 

  20. A. L. Zefirov, T. Benish, N. Fatkullin, S. Tcheranov, and R. Khazipov, “Localization of active zones,” Nature, 376, 393–394 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. A. Wernig and M. Dorlochter, “Plasticity of the nerve muscle junction,” Progr. Zool., 37, 83–99 (1989).

    Google Scholar 

  22. D. F. Wilson, “Effects of caffeine on neuromuscular transmission in the rat,” Amer. J. Physiol., 225, 862–865 (1973).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 91, No. 7, pp. 821–831, July, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zefirov, A.L., Abdrakhmanov, M.M. & Grigor’ev, P.N. Effects of high-potassium solutions and caffeine on synaptic vesicle exoendocytosis processes in the frog neuromuscular junction. Neurosci Behav Physiol 36, 781–788 (2006). https://doi.org/10.1007/s11055-006-0088-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-006-0088-7

Key words

Navigation