Skip to main content
Log in

Two phases of the contingent negative variation in humans: Association with motor and mental functions

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The question of the relationship between contingent negative variation and the mechanisms controlling motor and mental functions has received inadequate study. The aims of the present work were to investigate the relationship between the early and late phases of contingent negative variation and the state of motor and mental functions in patients with Parkinson’s disease and to study the effects of levodopa on contingent negative variation. Patients with Parkinson’s disease showed significant decreases in the amplitudes and areas of both phases of contingent negative variation as compared with subjects of similar age. Correlation analysis demonstrated a negative relationship between the extent of impairment of coordinatory muscle interactions and the amplitudes of both phases of this variation (p < 0.01). There was a positive relationship between the magnitudes of both phases and the state of mental functions, particularly memory (p < 0.05). Treatment of patients with Parkinson’s disease with levodopa was followed by a significant increase in the late phase (p < 0.05). The results obtained here provide evidence for the important role of structures supporting both direct motor control and mental functions in forming both phases of contingent negative variation. The greater effect of levodopa on the late phase of contingent negative variation suggests that the efferent system of the basal ganglia has a greater role in generating the late phase than in organizing the early phase of the variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Arkhipova, E. M. Troshina, and V. A. Shabalov, “Generation of movement-associated brain potentials in humans in various types of motor pathology,” Zh. Vyssh. Nerv. Deyat., 41, No. 4, 655–662 (1991).

    CAS  Google Scholar 

  2. M. I. Vendrova, R. A. Saderkov, and V. L. Golubev, “The efficiency of new forms of Madopar in Parkinson’s disease,” Zh. Nevropatol. Psikhiatrii, 100, No. 12, 46–49 (2000).

    CAS  Google Scholar 

  3. V. V. Gnezditskii, Evoked Brain Potentials in Clinical Practice [in Russian], MEDpress-inform, Moscow (2003).

    Google Scholar 

  4. L. R. Zenkov and M. A. Ronkin, Functional Diagnosis of Nervous Diseases [in Russian], MEDpress-inform, Moscow (2004).

    Google Scholar 

  5. I. N. Krylov, “Characteristics of endogenous evoked potentials in psychomotor responses in normal conditions and in dysfunction of the basal ganglia in humans,” Ros. Fiziol. Zh. im. I. M. Sechenova, 81, No. 4, 51–62 (1995).

    CAS  Google Scholar 

  6. G. F. Lakin, Biometrics [in Russian], Vysshaya Shkola, (1973).

  7. E. M. Troshina, “Characteristics of motor potentials in impairments of the function of the subcortical motor structures of the human brain,” Zh. Vyssh. Nerv. Deyat., 39, No. 1, 37–43 (1989).

    CAS  Google Scholar 

  8. G. Amabile, F. Fattapposta, G. Pozzessere, G. Albani, L. Sanarelli, P. A. Rizzo, and C. Morocutti, “Parkinson’s disease: electrophysiological (CNV) analysis related to pharmacological treatment,” EEG Clin. Neurophysiol., 64, No. 6, 521–524 (1986).

    Article  CAS  Google Scholar 

  9. A. Aotsuka, S. J. Wheate, M. E. Dranke, Jr., and G. W. Paulson, “Event-related potentials in Parkinson’s disease,” Electromyogr. Clin. Neurophysiol., 36, No. 4, 215–220 (1996).

    CAS  PubMed  Google Scholar 

  10. A. L. Bartels, Y. Balash, T. Gurevich, J. D. Schaafsma, J. M. Hausdorff, and N. Giladi, “Relationship between freezing of gait (FOG) and other features of Parkinson’s FOG is not correlated with bradykinesia,” J. Clin. Neurosci., 10, No. 5, 584–588 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. K. Botzel, M. Mayer, W. H. Oertel, and W. Paulus, “Frontal and parietal premovement slow brain potentials in Parkinson’s disease and aging,” Mov. Disord., 10, No. 1, 85–91 (1995).

    CAS  PubMed  Google Scholar 

  12. L. Deecke, “Clinical neurophysiology of Parkinson’s disease. Bereitschaftpotential and contingent negative variation,” Adv. Neurol., 86, 257–271 (2001).

    CAS  PubMed  Google Scholar 

  13. S. R. Filipovic, N. Covickovic-Sternic, V. M. Radovic, N. Dragasevic, M. Stoyanovic-Svete, and V. S. Kostic, “Correlation between Bereitschaftspotential and reaction time measurements in patients with Parkinson’s disease. Measuring the impaired supplementary motor area function?” J. Neurol. Sci., 147, No. 2, 177–183 (1997).

    CAS  PubMed  Google Scholar 

  14. W. Gerschlager, F. Alesch, R. Cunnington, L. Deecke, G. Dirnberger, W. Endl, G. Lindinger, and W. Lang, “Bilateral subthalamic nucleus stimulation improves frontal cortex function in Parkinson’s disease. An electrophysiological study of the contingent negative variation,” Brain, 122, No. 12, 2365–2373 (1999).

    Article  PubMed  Google Scholar 

  15. A. Ikeda, H. Shibasaki, R. Kaji, K. Terada, T. Nagamine, M. Honda, and J. Kimura, “Dissociation between contingent negative variation (CNV) and Bereitschaftspotential (BP) in patients with parkinsonism,” EEG Clin. Neurophysiol., 102, No. 2, 142–151 (1997).

    Article  CAS  Google Scholar 

  16. Y. Katayama, M. Kasai, H. Oshima, C. Kufaya, and T. Yamamoto, “Effects of anterodorsal pallidal stimulation on gait freezing (Kinesia paradoxa) in Parkinson’s disease,” Stereotact. Funct. Neurosurg., 74, No. 3–4, 99–105 (2000).

    CAS  PubMed  Google Scholar 

  17. G. Kemoun and L. Defebvre, “Gait disorders in Parkinson disease. Gait freezing and falls: therapeutic management,” Presse Med., 30, No. 9, 460–468 (2001).

    CAS  PubMed  Google Scholar 

  18. M. Oishi, Y. Mochizuki, C. Du, and T. Takasu, “Contingent negative variation and movement-related cortical potentials in parkinsonism,” EEG Clin. Neurophysiol., 95, No. 5, 346–349 (1995).

    Article  CAS  Google Scholar 

  19. A. Parent and L. N. Hazrati, “Anatomical aspects of information processing in primate basal ganglia,” Trends Neurosci., 16, No. 3, 111–116 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. F. Pulvermuller, W. Lutzenberger, V. Muller, B. Mohr, J. Dichgans, and N. Birbaumer, “P3 and contingent negative variation in Parkinson’s disease,” EEG Clin. Neurophysiol., 98, No. 6, 456–467 (1996).

    CAS  Google Scholar 

  21. K. Saitou and Y. Washimi, “Movement related conical potentials upon forward-stepping in patients with Parkinson’s disease,” Nippon Rinsho, 55, No. 1, 185–188 (1997).

    CAS  PubMed  Google Scholar 

  22. J. D. Schaarsma, Y. Balash, T. Gurevich, A. L. Bartels, J. M. Hausdorff, and N. Giladi, “Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease,” Eur. J. Neurol., 10, No. 4, 391–398 (2003).

    Google Scholar 

  23. H. Shibasaki, G. Barrett, E. Halliday, and A. M. Halliday, “Components of the movement-related cortical potential and their scalp topography,” EEG. Clin. Neurophysiol., 49, No. 3–4, 213–226 (1980).

    CAS  Google Scholar 

  24. R. Verleger, E. Wascher, V. Arolt, C. Daase, A. Strohm, and D. Kompf, “Slow EEC-potentials (contingent negative variation and post-imperative negative variation) in schizophrenia: their association to the present state and to Parkinsonian medication effects,” Clin. Neurophysiol., 110, No. 7, 1175–1192 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. E. Wascher, R. Verleger, P. Vieregge, P. Jaskowski, S. Koch, and D. Koompf, “Responses to cued signals in Parkinson’s disease. Distinguishing between disorders of cognition and of activation,” Brain, 120, No. 8, 1355–1375 (1997).

    Article  PubMed  Google Scholar 

  26. S. Yazawa, A. Ikeda, R. Kaji, K. Terada, T. Negamine, K. Toma, T. Kubori, J. Kimura, and H. Shibasaki, “Abnormal cortical processing of voluntary muscle relaxation in patients with focal hand dystonia studied by movement-related potentials,” Brain, 122, 1357–1366 (1999).

    Article  PubMed  Google Scholar 

  27. R. Zappoli, A. Versari, G. Arnetoli, M. Paganini, G. C. Muscas, M. G. Arneodo, P. F. Gangemi, and M. Bartelli, “Topographic CNV activity mapping, presenile mild primary cognitive decline and Alzheimer-type dementia,” Neurophysiol. Clin., 21, No. 5–6, 473–483 (1991).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 91, No. 4, pp. 364–373, April, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukhanina, E.P., Karaban’, I.N., Burenok, Y.A. et al. Two phases of the contingent negative variation in humans: Association with motor and mental functions. Neurosci Behav Physiol 36, 359–365 (2006). https://doi.org/10.1007/s11055-006-0025-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-006-0025-9

Key words

Navigation