Skip to main content
Log in

Ephaptic Feedback in Identified Synapses in Mollusk Neurons

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The possible existence of intrasynaptic ephaptic feedback in the invertebrate CNS was studied. Intracellular recordings were made of excitatory postsynaptic potentials and currents arising on activation of the recently described monosynaptic connection between identified neurons in the snail CNS. In the presence of ephaptic feedback, tetanization of the postsynaptic neuron with hyperpolarizing impulses should activate presynaptic calcium channels, thus increasing the amplitude of excitatory postsynaptic potential, while sufficiently strong postsynaptic hyperpolarization applied during generation of the excitatory postsynaptic current should induce “supralinear” increases in its amplitude, as has been observed previously in rat hippocampal neurons. The first series of experiments involved delivery of 10 trains of hyperpolarizing postsynaptic impulses (40–50 mV, duration 0.5 sec, frequency 1 Hz, train duration 45 sec); significant changes in the amplitude of excitatory postsynaptic were not seen. In the second series of experiments, changes in the amplitude of the excitatory postsynaptic current were studied during hyperpolarization of the postsynaptic neuron. At a potential of −100 mV, the amplitude of the excitatory postsynaptic current increased significantly more than predicted by its “classical” linear relationship with membrane potential. This “supralinear” increase in the amplitude of the excitatory postsynaptic potential can be explained by the operation of ephaptic feedback and is the first evidence for this phenomenon in CNS synapses of invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. M. Balaban, N. I. Bravarenko, L. L. Voronin, and P. V. Gusev, “Long-term potentiation in the central nervous system of the snail after intracellular tetanization,” Dokl. Ros. Akad. Nauk., 343, No.4, 563–566 (1996).

    Google Scholar 

  2. L. L. Voronin, “Intrasynaptic ephaptic feedback in central synapses,” Ros. Fiziol. Zh. im. I. M. Sechenova, 85, No.6, 729–742 (1999).

    Google Scholar 

  3. L. L. Voronin, M. A. Volgushev, M. V. Sokolov, A. S. Kas’yanov, and M. V. Chistyakova, “The effects of postsynaptic hyperpolarization support the existence of intrasynaptic ephaptic feedback in central synapses,” Dokl. Ros. Akad. Nauk., 369, No.1, 126–129 (1999).

    Google Scholar 

  4. S. V. Kul’chitskii, V. V. Maksimov, P. V. Maksimov, M. S. Lemak, and L. L. Voronin, “Correlation between paired responses supports the existence of positive ephaptic feedback in central synapses,” Dokl. Ros. Akad. Nauk., 389, No.1, 1–3 (2003).

    Google Scholar 

  5. N. Berretta, A. V. Rossokhin, E. Cherubini, A. V. Astrelin, and L. L. Voronin, “Long-term synaptic changes induced by intracellular tetanization of CA3 pyramidal neurones in hippocampal slices from juvenile rats,” Neurosci., 93, 469–477 (1999).

    Article  Google Scholar 

  6. N. Berretta, A. V. Rossokhin, A. M. Kasyanov, M. V. Sokolov, E. Cherubini, and L. L. Voronin, “Postsynaptic hyperpolarization increases the strength of AMPA mediated synaptic transmission at large synapses between mossy fibres and CA3 pyramidal cells,” Neuropharmacology, 39, 2288–2301 (2000).

    Article  PubMed  Google Scholar 

  7. T. V. P. Bliss and G. Collingridge, “A synaptic model of memory: long-term potentiation in the hippocampus,” Nature, 361, 31–39 (1993).

    Article  PubMed  Google Scholar 

  8. N. J. Bravarenko, P. V. Gusev, P. M. Balaban, and L. L. Voronin, “Postsynaptic induction of long-term synaptic facilitation in snail central neurons,” Neuroreport, 6, No.8, 1182–1186 (1995).

    PubMed  Google Scholar 

  9. A. L. Byzov and T. M. Shura-Bura, “Electrical feedback mechanism in the processing of signals in the outer plexiform layer of the retina,” Vision. Res., 26, 33–34 (1986).

    Article  PubMed  Google Scholar 

  10. D. S. Chesnoy-Marchais, “Characterization of chloride conductance activated by hyperpolarization in Aplysia neurones,” J. Physiol. (London), 342, 277–308 (1983).

    Google Scholar 

  11. A. M. Kasyanov, V. V. Maximov, A. L. Byzov, et al., “Intrasynaptic ephaptic feedback alters amplitude-voltage relations of mossy fibre responses in rat CA3 hippocampal neurones,” Neurosci., 101, No.2, 323–336 (2000).

    Article  Google Scholar 

  12. U. Kuhnt, A. M. Kleschevnikov, and L. L. Voronin, “Long-term enhancement of synaptic transmission in the hippocampus after tetanization of single neurones by intracellular current pulses,” Neurosci. Res. Commun., 14, 115–123 (1994).

    Google Scholar 

  13. A. Y. Malyshev and P. M. Balaban, “Identification of mechanoafferent neurons in terrestrial snail: response properties and synaptic connections,” J. Neurophysiol., 87, No.5, 2364–2371 (2002).

    PubMed  Google Scholar 

  14. A. Malyshev, N. Bravarenko, and P. Balaban, “Dependence of synaptic facilitation postsynaptically induced in snail neurons on season and serotonin level,” Neuroreport, 8, No.5, 1179–1182 (1997).

    PubMed  Google Scholar 

  15. V. V. Maximov and A. L. Byzov, “Horizontal cell dynamics: what are the main factors?” Vision Res., 36, 4077–4087 (1996).

    Article  PubMed  Google Scholar 

  16. N. Spruston and D. Johnston, “Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons,” J. Neurophysiol., 67, No.3, 508–529 (1992).

    PubMed  Google Scholar 

  17. N. Spruston, D. Jaffe, and D. Johnston, “Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties,” Trends Neurosci., 17, 161–166 (1994).

    Article  PubMed  Google Scholar 

  18. M. Volgushev, L. L. Voronin, M. Chistiakova, and W. Singer, “Induction of LTP and LTD in visual cortex neurones by intracellular tetanization,” Neuroreport, 5, 2069–2072 (1994).

    PubMed  Google Scholar 

  19. M. Volgushev, L. L. Voronin, M, Chistiakova, and W. Singer, “Relations between long-term synaptic modifications and paired-pulse interactions in the rat neocortex,” Eur. J. Neurosci., 9, 751–760 (1997).

    Google Scholar 

  20. L. L. Voronin, “On the quantal analysis of hippocampal long-term potentiation and related phenomena of synaptic plasticity,” Neurosci., 56, 275–304 (1993).

    Article  Google Scholar 

  21. L. L. Voronin, A. Byzov, A. Kleshevnikov, et al., “Neurophysiological analysis of long-term potentiation in mammalian brain,” Behav. Brain Res., 66, 45–52 (1995).

    Article  PubMed  Google Scholar 

  22. L. L. Voronin, M. Volgushev, M. Sokolov, et al., “Evidence for an ephaptic feedback in cortical synapses: postsynaptic hyperpolarization alters the number of response failures and quantal content,” Neurosci., 92, No.2, 399–405 (1999).

    Article  Google Scholar 

  23. R. I. Wilson and R. A. Nicoll, “Endocannabinoid signaling in the brain,” Science, 296, 678–682 (2002).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 54, No. 4, pp. 565–572, July–August, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravarenko, N.I., Malyshev, A.Y., Voronin, L.L. et al. Ephaptic Feedback in Identified Synapses in Mollusk Neurons. Neurosci Behav Physiol 35, 781–787 (2005). https://doi.org/10.1007/s11055-005-0124-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0124-z

Key Words

Navigation