Skip to main content
Log in

Near-Surface Crustal Architecture and Geohydrodynamics of the Crystalline Basement Terrain of Araromi, Akungba-Akoko, SW Nigeria, Derived from Multi-Geophysical Methods

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Integrated coplanar loop electromagnetic conductivity method, electrical resistivity tomography (ERT), and Schlumberger vertical electrical sounding (VES) methods were deployed to investigate the near-surface crustal architecture and geohydrodynamics of the crystalline basement terrain of Araromi, Akungba-Akoko, Ondo State, southwestern Nigeria. The study aimed at understanding the spatial distributions of groundwater, and soil moistures with exhumed crustal structures, to alleviate groundwater deficit, and the failure of engineering structural foundations in this area. Six geophysical survey traverses of varying lengths were explored, with eight VES stations selected for further investigations on the lithostratigraphic model for constraint and deeper probing. The measured conductivities over the study area varied in the range of 3.0–35.19 mS/m. The results coincided with the ERT responses for the motley topsoil, clayey to sandy weathered strata, partially weathered/fractured bedrock, and fresh gneissic bedrock. A, AK, HA, and KQ types of curves pictured the varying depths of the deep-weathered troughs, and the fractures (i.e., F1 to F21), arising from the prevalent intense metamorphism and progressive weathering in the area. The geohydrodynamic systems of the study area’s crustal architecture were attributed to water–rock interactions within the geologic structures. Also, the depths of the fractured zones extending more than 52 m in some sections enhanced the spatial groundwater storage, despite the thin overburden (i.e., < 4 m). The residual soils’ water retention is credited to clayey soils from the rich feldspathic bedrock. Hence, the results obtained suggest that intended wells and boreholes should take advantage of the deep-weathered and fractured zones, with average depths of 11 m and > 39 m, respectively, to ameliorate the deficit of groundwater supply in the area. Furthermore, failures of engineering structural foundations are likely to occur at highly conductive sections (i.e., > 20 mS/m), oscillating bedrock surfaces, floating boulders, and stiffer soils under incompetent strata, and conductive thin and large-size apertures. The study demonstrated the advantages of integrating multi-geophysical methods of data collection and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Akingboye, A. S., & Bery, A. A. (2021a). Performance evaluation of copper and stainless-steel electrodes in electrical tomographic imaging. Journal of Physical Science, 32(3), 13–29.

    Google Scholar 

  • Akingboye, A. S., & Bery, A. A. (2021b). Evaluation of lithostratigraphic units and groundwater potential using the resolution capacities of two different electrical tomographic electrodes at dual-spacing. Contributions to Geophysics and Geodesy, 51(4), 295–320.

    Google Scholar 

  • Akingboye, A. S., & Ogunyele, A. C. (2019). Insight into seismic refraction and electrical resistivity tomography techniques in subsurface investigations. Rudarsko Geolosko Naftni Zbornik (The Mining-Geological-Petroleum Engineering Bulletin), 34(1), 93–111.

  • Akingboye, A. S., & Osazuwa, I. B. (2021). Subsurface geological, hydrogeophysical, and engineering characterization of Etioro-Akoko, southwestern Nigeria, using electrical resistivity tomography. NRIAG Journal of Astronomy and Geophysics, 9(1), 43–57.

    Google Scholar 

  • Akingboye, A. S., Ogunyele, A. C., Jimoh, A. T., Adaramoye, O. B., Adeola, A. O., & Ajayi, T. (2021) Radioactivity, radiogenic heat production and environmental radiation risk of the Basement Complex rocks of Akungba-Akoko, southwestern Nigeria: insights from in situ gamma-ray spectrometry. Environmental Earth Sciences 80(6).

  • Akingboye, A. S., Osazuwa, I. B., & Mohammed, M. Z. (2020). Electrical resistivity tomography for geo-engineering investigation of subsurface defects: A case study of Etioro-Akoko highway, Ondo State, southwestern Nigeria. Studia Quaternaria, 37(2), 101–107.

    Google Scholar 

  • Akingboye, A. S., Osazuwa, I. B., & Mohammed, M. Z. (2019). Electrical resistivity tomography for sustainable groundwater development in a complex geological area. Materials and Geoenvironment, 66(2), 121–128.

    Google Scholar 

  • Amato, V., Cozzolino, M., de Benedittis, G., di Paola, G., Gentile, V., Giordano, C., Marino, P., Rosskpof, C. M., & Valente, E. (2016). An integrated quantitative approach to assess the archaeological heritage in highly anthropized areas: The case study of Aesernia (southern Italy). Acta IMEKO, 5, 33.

    Google Scholar 

  • Aminu, M. B. (2015). Electrical resistivity imaging of a thin clayey aquitard developed on basement rocks in parts of Adekunle Ajasin University Campus, Akungba-Akoko, south-western Nigeria. Environmental Research, Engineering and Management, 71(1), 47–55.

    Google Scholar 

  • Aminu, M. B. (2018). Subsurface electrical resistivity imaging and electromagnetic conductivity profiling at a proposed construction site at Adekunle Ajasin University campus, Akungba-Akoko, southwestern Nigeria. Global Journal of Geological Sciences, 16, 53–60.

    Google Scholar 

  • Aminu, M. B. (2021). Geophysical investigation of the Orle River fracture system in Igarra Township, southwestern Nigeria. Global Journal of Geological Sciences, 19(1), 1–14.

    Google Scholar 

  • Arifin, M. H., Kayode, J. S., Ismail, M. K. I., Abdullah, A. M., Embrandiri, A., Mohd, Nazer N. S., & Azmi, A. (2020). Data for the industrial and municipal environmental wastes hazard contaminants assessment with integration of RES2D techniques and Oasis Montaj Software. Data-In- Brief., 33, 106595.

    Google Scholar 

  • Basheer, A. A., Taha, A. I., El-Kotb, A., Abdalla, F. A., & Elkhateeb, S. O. (2014). Relevance of AEM and TEM to detect the groundwater aquifer at Faiyum Oasis area Faiyum, Egypt. International Journal of Geosciences, 5, 611–621.

    Google Scholar 

  • Berdichevsky, M. N., & Dmitriev, V. I. (2008). Models and methods of magnetotellurics. Berlin: Springer, 564p. https://doi.org/10.1007/978-3-540-77814-1

  • Bery, A. A., & Saad, R. (2012). Clayey sand soil’s behaviour analysis and imaging subsurface structure via engineering characterizations and integrated geophysical tomography modeling methods. International Journal of Geosciences, 3, 93–104.

    Google Scholar 

  • Binley, A., & Kemna, A. (2005). DC resistivity and induced polarization methods. 30p. https://doi.org/10.1007/1-4020-3102-5_5

  • Bis, W., Herbich, T., Ryndziewicz, R., Osiadacz, M., Radomski, M., Cembrzyński, P., Zbieranowski, M., & Majewski, J. (2021). An integrated geophysical and archaeological approach to the study of the Late Medieval castle in Zelechów in Mazovia Poland. Archaeological Prospection, 28(4), 485–503.

    Google Scholar 

  • Bufford, K. M., Atekwana, E. A., & Abdelsalam, M. G. (2012). Geometry and faults tectonic activity of the Okavango Rift Zone, Botswana: Evidence from magnetotelluric and electrical resistivity tomography imaging. Journal of African Earth Sciences, 65, 61–71.

    Google Scholar 

  • Bute, S. I., Yang, X., Cao, J., Liu, L., Deng, J., Haruna, I. V., Girei, M. B., Abubakar, U., & Akhtar, S. (2019). Origin and tectonic implications of ferroan alkali-calcic granitoids from the Hawal Massif, East-Eastern Nigeria terrane: Clues from geochemistry and zircon U-Pb-Hf isotopes. International Geology Reviews, 62(2), 129–152.

    Google Scholar 

  • Caby, R., & Boessé, J. M. (2001). Pan-African nappe system in Southwest Nigeria: The Ife-Ilesha schist belt. Journal of African Earth Sciences, 33, 211–225.

    Google Scholar 

  • Chave, A. D., & Jones, A. G. (2012). The magnetotelluric method: Theory and practice. Cambridge University Press.

    Google Scholar 

  • Cheng, Q., Tao, M., Chen, X., & Binley, A. (2019). Evaluation of electrical resistivity tomography (ERT) for mapping the soil–rock interface in karstic environments. Environmental Earth Sciences, 78, 439.

    Google Scholar 

  • Cozzolino, M., Gentile, V., Mauriello, P., & Peditrou, A. (2020). Non-destructive techniques for building evaluation in urban areas: The case study of the redesigning project of Eleftheria Square (Nicosia, Cyprus). Applied Sciences, 10, 4296.

    Google Scholar 

  • Dahlin, T., & Zhou, B. (2004). A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting, 52, 379–398.

    Google Scholar 

  • Dahlin, T., & Loke, M. H. (2018). Underwater ERT surveying in water with resistivity layering with example of application to site investigation for a rock tunnel in central Stockholm. Near Surface Geophysics, 16, 230–237.

    Google Scholar 

  • deGroot-Hedlin, C., & Constable, S. C. (1990). Occam’s inversion to generate smooth two-dimensional models from magnetotelluric data. Geophysics, 55, 1613–1624.

    Google Scholar 

  • Fagbohun, B. J., Omitogun, A. A., Bamisaiye, O. A., & Ayoola, F. J. (2020). Remote detection and interpretation of structural style of the Zuru Schist Belt, northwest Nigeria. Geocarto International. https://doi.org/10.1080/10106049.2020.1753822

    Article  Google Scholar 

  • Ferré, E., Gleizes, G., & Caby, R. (2002). Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of Eastern Nigeria: A synthesis. Precambrian Research, 144, 199–219.

    Google Scholar 

  • Gabàs, A., Macau, A., Benjumea, B., Bellmunt, F., Figueras, S., & Vila, M. (2013). Combination of geophysical methods to support urban geological mapping. Surveys in Geophysics, 35, 983–1002.

    Google Scholar 

  • Ganerød, G. V., Rønning, J. S., Dalsegg, E., Elvebakk, H., Holmøy, K., Nilsen, B., & Braathen, A. (2006). Comparison of geophysical methods for sub-surface mapping of faults and fracture zones in a section of the Viggja road tunnel. Norway. Bulletin of Engineering Geology and the Environment, 65, 231–243.

    Google Scholar 

  • Gao, Q., Shang, Y., Hasan, M., Jin, W., & Yang, P. (2018). Evaluation of a weathered rock aquifer using ERT method in South Guangdong China. Water, 10, 293.

    Google Scholar 

  • Goodenough, K. M., Lusty, P. A. J., Roberts, N. M. W., Key, R. M., & Garba, A. (2014). Post-collisional Pan-African granitoids and rare metal pegmatites in western Nigeria: Age, petrogenesis, and the ‘pegmatite conundrum.’ Lithos, 200, 22–34.

    Google Scholar 

  • Hasan, M., Shang, Y., Akhter, G., & Jin, W. (2020a). Delineation of contaminated aquifers using integrated geophysical methods in Northeast Punjab Pakistan. Environmental Monitoring and Assessment, 192, 12.

    Google Scholar 

  • Hasan, M., Shang, Y., Akhter, G., & Khan, M. (2017). Geophysical investigation of fresh-saline water interface: A case study from South Punjab, Pakistan. Groundwater, 55, 841–856.

    Google Scholar 

  • Hasan, M., Shang, Y., Jin, W., & Akhter, G. (2020b). Estimation of hydraulic parameters in a hard rock aquifer using integrated surface geoelectrical method and pumping test data in southeast Guangdong China. Geosciences Journal, 25(2), 223–242.

    Google Scholar 

  • Hering, P., Brown, C., & Junge, A. (2019). Magnetotelluric apparent resistivity tensors for improved interpretations and 3-D inversions. Journal of Geophysical Research: Solid Earth, 124, 7652–7679.

    Google Scholar 

  • Hussain, Y., Uagoda, R., Borges, W., Nunes, J., Hamza, O., Condori, C., Aslam, K., Dou, K., & Cárdenas-Soto, M. (2020). The potential use of geophysical methods to identify cavities, sinkholes and pathways for water infiltration. Water, 12, 2289.

    Google Scholar 

  • Kayode, J. S., Arifin, M. H., Hussin, A., & Roslan, N. (2019). Engineering site characterization using multi-electrode electrical resistivity tomography. Sains Malaysiana, 48(5), 945–963.

    Google Scholar 

  • Kearey, P., Brooks, M., & Hill, I. (2002). An introduction to geophysical exploration (3rd ed.). Malden: Blackwell Publishing.

    Google Scholar 

  • Kroner, A., Ekwueme, B. N., & Pidgeon, R. T. (2001). The oldest rocks in West Africa: SHRIMP zircon age for early Archean migmatitic orthogneiss at Kaduna, Northern Nigeria. The Journal of Geology, 109, 399–406.

    Google Scholar 

  • Laloy, E., Javaux, M., Vanclooster, M., Roisin, C., & Bielders, C. (2011). Electrical resistivity in a loamy soil: Identification of the appropriate pedo-electrical model. Vadose Zone Journal, 10, 1023–1033.

    Google Scholar 

  • Loke, M. H. (2004). Rapid 2D resistivity and IP inversion using the least-square method. Manual for RES2DINV, version 3.54. 53 p.

  • Lück, E., Eisenreich, M., Spangenberg, U., & Christl, G. (1997). A note on geophysical prospection of archaeological structures in urban contexts in Potsdam (Germany). Archaeological Prospecting, 4, 231–238.

    Google Scholar 

  • Maslakowski, M., Kowalczyk, S., Mieszkowski, R., & Józefiak, K. (2014). Using electrical resistivity tomography (ERT) as a tool in Geotechnical investigation of the subsurface of a highway. Studia Quaternaria, 31(2), 83–89.

    Google Scholar 

  • McLachlan, P., Blanchy, G., Chambers, J., Sorensen, J., Uhlemann, S., Wilkinson, P., & Binley, A. (2021). The application of electromagnetic induction methods to reveal the hydrogeological structure of a riparian wetland. Water Resources Research, 57, e2020WR029221.

  • McNeill, J. D. (1980). Electromagnetic terrain conductivity measurement at low conductivity numbers: Geonics Technical Note TN-19, Ontario.

  • Merritt, A. J. (2014). 4D geophysical monitoring of hydrogeology precursors to landslide activation. PhD Thesis, School of Earth and Environmental, University of Leeds, UK. 276 p.

  • Moghadas, D., Taghizadeh-Mehrjardi, R., & Triantafilis, J. (2016). Probabilistic inversion of EM38 data for 3D soil mapping in central Iran. Geoderma Regional, 7, 230–238.

    Google Scholar 

  • Mohammed, M. Z., Ogunribido, T. H. T., & Funmilayo, A. T. (2012). Electrical resistivity sounding for subsurface delineation and evaluation of groundwater potential of Araromi Akungba-Akoko Ondo State southwestern Nigeria. Journal of Environmental Earth Sciences, 2(7), 29–40.

    Google Scholar 

  • Nabighian, M. N. (1991). Electromagnetic methods in applied geophysics. Society of Exploration Geophysicists.

    Google Scholar 

  • Ngan-Tillard, D., Venmans, A., Slob, E., & Mulder, A. (2010). Total engineering geology approach applied to motorway construction and widening in the Netherlands: Part II: Pilot site in tidal deposits. Engineering Geology, 114, 171–180.

    Google Scholar 

  • Nyabeze, P. K., Yibas, B., & Sakala, E. (2012). Investigation of possible contaminant plumes emanating from residual mine deposits in the Mpumalanga province of South Africa, results from geophysical surveys. GeoManitoba Building on the Past, September, 1–9.

  • Obaje, N. G. (2009). Geology and mineral resources of Nigeria. Heidelberge, Berlin: Springer. 221 p. https://doi.org/10.1007/978-3-540-92685-6

  • Ogunyele, A. C., Obaje, S. O., Akingboye, A. S., Adeola, A. O., Babalola, A. O., & Olufunmilayo, A. T. (2020). Petrography and geochemistry of Neoproterozoic charnockite-granite association and metasedimentary rocks around Okpella, southwestern Nigeria. Arabian Journal of Geosciences, 13, 780.

    Google Scholar 

  • Olatinsu, O. B., & Salawudeen, S. Y. (2021). Integrated geophysical investigation of groundwater potential and bedrock structure in Precambrian basement rocks of Ife, southwest Nigeria. Groundwater for Sustainable Development, 14, 100616.

  • Orellana, E., & Mooney, H. (1966). Master tables and curves for VES over layered structures. Interciencia, Madrid, Spain.

  • Pasierb, B., Grodeck, M., & Gwóźdź, R. (2019). Geophysical and geotechnical approach to a landslide stability assessment: A case study. Acta Geophysica, 67, 1823–1834.

    Google Scholar 

  • Rahaman, M. A. (1976). Review of the basement geology of southwestern Nigeria. In C. A. Kogbe (Ed.), Geology of Nigeria (pp. 41–48). Elizabeth Publisher. Co.

    Google Scholar 

  • Rahaman, M. A. (1988). Recent advances in the study of the Basement Complex of Nigeria. In P. O. Oluyide, W. C. Mbonu, A. E. O. Ogezi, I. G. Egbuniwe, A. C. Ajibade, & A. C. Umeji (Eds.), Precambrian geology of Nigeria (pp. 11–43). Kaduna: Geological Survey of Nigeria.

    Google Scholar 

  • Rahaman, M. A. (1989). Review of the basement geology of southwestern Nigeria. In Kogbe C A (eds.). Geology of Nigeria (2nd eds.). Rockview Nigeria Limited, Jos. 39–56.

  • Ren, Z., & Kalscheuer, T. (2020). Uncertainty and resolution analysis of 2D and 3D inversion models computed from geophysical electromagnetic data. Surveys in Geophysics, 41, 47–112.

    Google Scholar 

  • Rizzo, E., Capozzoli, L., de Martino, G., & Grimaldi, S. (2019). Urban geophysical approach to characterize the subsoil of the main square in San Benedetto del Tronto town (Italy). Engineering Geology, 257, 105133.

    Google Scholar 

  • Robineau, B., Join, J. L., Beauvais, A., Parisot, J. C., & Savin, C. (2007). Geoelectrical imaging of a thick regolith developed on ultramafic rocks: Groundwater influence. Australian Journal of Earth Sciences, 54(5), 773–781.

    Google Scholar 

  • Rucker, D. F., Tsai, C.-H., Carroll, K. C., Brooks, S., Pierce, E. M., Ulery, A., & Derolph, C. (2021). Bedrock architecture, soil texture, and hyporheic zone characterization combining electrical resistivity and induced polarization imaging. Journal of Applied Geophysics, 188, 104306.

    Google Scholar 

  • Salleh, A. N., Nordiana, M. M., Saad, R., Zakaria, M. T., Mahmud, N., Rosli, F. N., & Samsudin, N. (2021). Application of geophysical methods to evaluate soil dynamic properties in Penang Island Malaysia. Journal of Asian Earth Sciences, 207, 104659.

    Google Scholar 

  • Soupios, P. M., Kouli, M., Vallianatos, F., Vafidis, A., & Stavroulakis, G. (2007). Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in China (Crete-Greece). Journal of Hydrology, 338, 122–131.

    Google Scholar 

  • Stober, I., & Bucher, K. (2015). Hydraulic conductivity of fractured upper crust: Insights from hydraulic tests in boreholes and fluid-rock interaction in crystalline basement rocks. Geofluids, 15, 161–178.

    Google Scholar 

  • Storz, H., Storz, W., & Jacobs, F. (2000). Electrical resistivity tomography to investigate geological structures of the Earth’s upper crust. Geophysical Prospecting, 48(3), 455–471.

    Google Scholar 

  • Telford, W.M., Geldart, L.P., Sheriff, R.E., & Keys, D.A. 1990. Applied geophysics. Cambridge University Press. 744p. https://doi.org/10.1017/CBO9781139167932

  • Woakes, M., Rahaman, M. A., & Ajibade, A. C. (1987). Some metallogenetic features of the Nigerian Basement. Journal of African Earth Sciences, 6(5), 655–664.

    Google Scholar 

Download references

Acknowledgments

The Department of Earth Sciences, Adekunle Ajasin University, is appreciated for providing the field equipment used for this study. We also appreciate the facilities and the conducive environment provided by the Geophysics Unit, School of Physics, Universiti Sains Malaysia to perform this research. The first author thanks Andy Anderson Bery, Ph.D., for his professional mentoring. Finally, we are grateful for the comments and suggestions of the Editor-in-Chief and the two anonymous reviewers, which have significantly improved the readability of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adedibu Sunny Akingboye.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendices

Appendix 1: Composite Results of 2D ERT Inversion Beneath TR1

figure a

Appendix 2: Composite Results of 2D ERT Inversion Beneath TR6

figure b

Appendix 3: Typical Iterated Ves Curve Types Generated for the Study Area

See Figure 11.

Figure 11
figure 11

(a) A type. (b) H type. (c) HA type. (d) AK type

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akingboye, A.S., Bery, A.A., Kayode, J.S. et al. Near-Surface Crustal Architecture and Geohydrodynamics of the Crystalline Basement Terrain of Araromi, Akungba-Akoko, SW Nigeria, Derived from Multi-Geophysical Methods. Nat Resour Res 31, 215–236 (2022). https://doi.org/10.1007/s11053-021-10000-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-10000-z

Keywords

Navigation