Skip to main content
Log in

Differentiation Index: A New Proxy for Determining Suitability of Volcanic Rocks for Production of Different Fiber Types

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Rock fiber is a suitable alternative material to replace traditional glass fibers used in many applications, and so many manufacturers and suppliers around the world are interested in rock fiber. The geochemical properties of rocks to be used in fiber production are of great importance. Some technological evaluation criteria have been proposed previously according to the geochemical properties of the related natural materials. In this study, a single parameter, namely the Differentiation Index (DI), calculated with normative mineral abundances, is proposed against four parameters [total acidity coefficient (Ktotal), total acidity modulus (Mtotal), acidity modulus (Ma), viscosity modulus (Mv)] used in previous studies to determine which type of fiber the rocks are suitable for. In addition, we compared the chemical compositions of the selected volcanic rocks from Sivas and Kayseri provinces (Central Anatolia, Turkey) with those of reference rocks from the literature. Sivas samples are dominantly silica-undersaturated, whereas Kayseri samples are silica-oversaturated with frequent silica-saturated samples in both groups. Mineral norms correlate well with modal abundances of nepheline in Sivas samples, indicating the calculated degrees of silica saturation is representative. The DI shows significant correlation with the four parameters and it distinguishes the reference rocks according to the fiber type to be produced. As a result of the evaluation made using the reference rocks employed in this study, we suggest that the 35–50 DI range represents rocks suitable for continuous fiber production, and rocks with DI of < 35 may be ideal for the production of staple fiber. According to the ranges of DI, while most of the Kayseri samples are recommended for continuous fiber production, both types of fibers can be produced from Sivas lavas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Acar, V., Cakir, F., Alyamaç, E., & Seydibeyoğlu, M. Ö. (2017). Basalt fibers. In Fiber technology for fiber-reinforced composites (pp. 169–185). https://doi.org/10.1016/B978-0-08-101871-2.00008-4

  • Alıcı Şen, P., Temel, A., & Gourgaud, A. (2004). Petrogenetic modelling of quaternary post-collisional volcanism: A case study of central and eastern Anatolia. Geological Magazine, 141(1), 81–98.

    Article  Google Scholar 

  • Aslanova, L. G. (2002). Method and apparatus for producing basaltic fibers.

  • Aydar, E., Çubukçu, H. E., Şen, E., Ersoy, O., Duncan, R. A., & Çiner, A. (2010). Timing of Cappadocian volcanic events and its significance on the development of Central Anatolian Orogenic Plateau. In EGU general assembly conference (p. 10147).

  • Aydar, E., & Gourgaud, A. (1998). The geology of Mount Hasan stratovolcano, central Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 85(1–4), 129–152.

    Article  Google Scholar 

  • Aydar, E., Gourgaud, A., Deniel, C., Lyberis, N., & Gundogdu, N. (1995). Le volcanisme quaternaire d’Anatolie centrale (Turquie): Association de magmatismes calco-alcalin et alcalin en domaine de convergence. Canadian Journal of Earth Sciences, 32(7), 1058–1069.

    Article  Google Scholar 

  • Aydar, E., Schmitt, A. K., Çubukçu, H. E., Akin, L., Ersoy, O., Sen, E., et al. (2012). Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. Journal of Volcanology and Geothermal Research, 213–214, 83–97.

    Article  Google Scholar 

  • Bass, M. N. (1972). Occurrence of transitional abyssal basalt. Lithos, 5(1), 57–67. https://doi.org/10.1016/0024-4937(72)90079-5

    Article  Google Scholar 

  • Bellieni, G., Cavazzini, G., Fioretti, A. M., Peccerillo, A., & Poli, G. (1991). Geochemical and isotopic evidence for crystal fractionation, AFC and crustal anatexis in the genesis of the Rensen Plutonic Complex (Eastern Alps, Italy). Chemical Geology, 92(1–3), 21–43. https://doi.org/10.1016/0009-2541(91)90048-V

    Article  Google Scholar 

  • Cox, K. G., Bell, J. D., & Pankhurst, R. J. (1979). The interpretation of igneous rocks. Springer. https://doi.org/10.1007/978-94-017-3373-1

    Book  Google Scholar 

  • Cross, W., Iddings, J. P., Pirsson, L. V., & Washington, H. S. (1902). A quantitative chemico-mineralogical classification and nomenclature of igneous rocks. The Journal of Geology, 10(6), 555–690.

    Article  Google Scholar 

  • Deniel, C., Aydar, E., & Gourgaud, A. (1998). The Hasan Dagi stratovolcano (Central Anatolia, Turkey): Evolution from calc-alkaline to alkaline magmatism in a collision zone. Journal of Volcanology and Geothermal Research, 87(1–4), 275–302.

    Article  Google Scholar 

  • Di Giuseppe, P., Agostini, S., Manetti, P., Savaşçın, M. Y., & Conticelli, S. (2018). Sub-lithospheric origin of Na-alkaline and calc-alkaline magmas in a post-collisional tectonic regime: Sr-Nd-Pb isotopes in recent monogenetic volcanism of Cappadocia, Central Turkey. Lithos, 316, 304–322.

    Article  Google Scholar 

  • Doğan-Külahçı, G. D. (2015). Chronological , Magmatological and Geochemical Study of Post-Collisional Basaltic Volcanism in Central Anatolia and Its Spatio-Temporal Evolution Orta Anadolu ’Daki̇ Çarpişma SonrasiBazalti̇kVolkani̇zmaninKronoloji̇k ,Magmatoloji̇k VeJeoki̇myasalİncelenm. Universite Blaise Pascal - Clermont-Ferrand II.

  • Doğan-Külahçı, G. D., Temel, A., Gourgaud, A., Varol, E., Guillou, H., & Deniel, C. (2018). Contemporaneous alkaline and calc-alkaline series in Central Anatolia (Turkey): Spatio-temporal evolution of a post-collisional quaternary basaltic volcanism. Journal of Volcanology and Geothermal Research, 356, 56–74.

    Article  Google Scholar 

  • Ersoy, O., Aydar, E., & Çubukçu, H. E. (2021). Geochemical evaluation of suitability of Central Anatolian (Turkey) volcanic rocks for rock fiber production. Natural Resources Research, 30(2), 1093–1104.

    Article  Google Scholar 

  • Fitton, J. G. (2021). Basalt and Related Rocks. In Encyclopedia of geology (pp. 84–98). Elsevier. https://doi.org/10.1016/b978-0-12-409548-9.12410-8

  • Fitton, J. G., & Upton, B. (1987). Alkaline igneous rocks (geological). Blackwell Scientific Publications. https://doi.org/10.1016/0024-4937(89)90017-0

    Book  Google Scholar 

  • Fomichev, S. V., Babievskaya, I. Z., Dergacheva, N. P., Noskova, O. A., & Krenev, V. A. (2012). Criteria for assessing technological properties of gabbro-basalt rocks. Theoretical Foundations of Chemical Engineering, 46(4), 424–428.

    Article  Google Scholar 

  • Gramenitskii, E. N., Kotel’nikov, A. R., Batanova, A. M., Shchekina, T. I., & Plechov, P. Y. (2000). Eksperimental’naya i tekhnicheskaya petrologiya (experimental and technical petrology). Nauchnyi Mir.

    Google Scholar 

  • Güçtekin, A., & Köprübaşi, N. (2009). Geochemical characteristics of mafic and intermediate volcanic rocks from the Hasandaǧ and Erciyes volcanoes (Central Anatolia, Turkey). Turkish Journal of Earth Sciences, 18(1), 1–27.

    Google Scholar 

  • Hollocher, K. (2020). NORM4 norm spreadsheet for single samples. http://minerva.union.edu/hollochk/c_petrology/other_files/norm4.xlsx

  • Johannesson, B., Sigfusson, T. I., & Franzson, H. (2019). Suitability of Icelandic basalt for production of continuous fibres. Applied Earth Science, 128(3), 73–78.

    Article  Google Scholar 

  • Kaminskas, A. Y. (2003). Mineral fiber chemistry and technology. Rossiiskii Khimicheskii Zhurnal, 47(4), 32–38.

    Google Scholar 

  • Khan, B. K., Bykov, I. I., & Korablin, V. P. (1969). Zatverde vanie i kristallizatsiya kamennogo lit’ya (solidification and crystallization of cast stone materials). Naukova Dumka.

    Google Scholar 

  • Kocaarslan, A. (2017). Gürün Ve Kangal Havzalarındaki (Sivas) Erken Miyosen-Pliyosen Bazaltlarının Petrolojisi Ve Tektonik Önemi. Dokuz Eylül Üniversitesi.

    Google Scholar 

  • Kocaarslan, A., & Ersoy, E. Y. (2018). Petrologic evolution of Miocene-Pliocene mafic volcanism in the Kangal and Gürün basins (Sivas-Malatya), central east Anatolia: Evidence for Miocene anorogenic magmas contaminated by continental crust. Lithos, 310, 392–408.

    Article  Google Scholar 

  • Krenev, V. A., Kondakov, D. F., Pechenkina, E. N., & Fomichev, S. V. (2020). Modification of the composition of gabbro-basalt raw materials during melting in an oxidizing, inert, or reducing atmosphere. Glass and Ceramics (english Translation of Steklo i Keramika), 76(11–12), 432–435.

    Article  Google Scholar 

  • Kürkçüoğlu, B., Pickard, M., Şen, P., Hanan, B. B., Sayit, K., Plummer, C., et al. (2015). Geochemistry of mafic lavas from Sivas, Turkey and the evolution of Anatolian lithosphere. Lithos, 232, 229–241.

    Article  Google Scholar 

  • Kürkçüoglu, B., Sen, E., Aydar, E., Gourgaud, A., & Gündogdu, N. (1998). Geochemical approach to magmatic evolution of Mt. Erciyes stratovolcano Central Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 85(1–4), 473–494.

    Article  Google Scholar 

  • Kürkçüoğlu, B., Sen, E., Temel, A., Aydar, E., & Gourgaud, A. (2001). Trace-element modeling and source constraints for tholeiitic and cale-alkaline basalts from a depleted asthenospheric mantle source, Mt. Erciyes stratovolcano, Turkey. International Geology Review, 43(6), 508–522.

    Article  Google Scholar 

  • Le Bas, M. J., Maitre, R. W. L., Streckeisen, A., & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3), 745–750.

    Article  Google Scholar 

  • Middlemost, E. A. K. (1989). Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology, 77(1), 19–26.

    Article  Google Scholar 

  • Morimoto, N. (1988). Nomenclature of pyroxenes. Mineralogy and Petrology, 39(1), 55–76.

    Article  Google Scholar 

  • Morozov, N. N., Bakunov, V. S., Morozov, E. N., Aslanova, L. G., Granovskii, P. A., Prokshin, V. V., & Zemlyanitsyn, A. A. (2001). Materials based on basalts from the European North of Russia. Steklo i Keramika, 58(3), 24–27.

    Google Scholar 

  • Mukherjee, S. P., Sinha, B. K., & Chattopadhyay, A. K. (2018). Statistical methods in social science research. Springer. https://doi.org/10.1007/9789811321467

    Article  Google Scholar 

  • Murao, S., Sie, S. H., Nakashima, K., Suter, G. F., & Watanabe, M. (1997). Elemental behavior during the fractionation of felsic magma at Hobenzan polymetallic province, SW Japan. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 130(1–4), 671–675.

    Article  Google Scholar 

  • Ngounouno, I., Déruelle, B., & Demaiffe, D. (2000). Petrology of the bimodal Cenozoic volcanism of the Kapsiki plateau (northernmost Cameroon, Central Africa). Journal of Volcanology and Geothermal Research, 102(1–2), 21–44.

    Article  Google Scholar 

  • Notsu, K., Fujitani, T., Ui, T., Matsuda, J., & Ercan, T. (1995). Geochemical features of collision-related volcanic rocks in central and eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 64(3–4), 171–191.

    Article  Google Scholar 

  • Novitskii, A. G., & Efremov, M. V. (2013). Technological aspects of the suitability of rocks from different deposits for the production of continuous basalt fiber. Glass and Ceramics (english Translation of Steklo i Keramika), 69(11–12), 409–412.

    Article  Google Scholar 

  • Önal, M., Ceyhan, F., & Helvacı, C. (2000). Gürün (Sivas) Orta Miyosen havzasinin stratigrafisi, Orta Anadolu (Stratigraphy of the Gürün (Sivas) Middle Miocene basin, Central Anatolia). In 53. Geological Congress of Turkey (p. 193).

  • Parlak, O., Delaloye, M., Demirkol, C., & Ünlügenç, U. C. (2001). Geochemistry of pliocene/pleistocene basalts along the Central Anatolia fault zone (CAFZ), Turkey. Geodinamica Acta, 14(1–3), 159–167.

    Article  Google Scholar 

  • Petro, W. L., Vogel, T. A., & Wilband, J. T. (1979). Major-element chemistry of plutonic rock suites from compressional and extensional plate boundaries. Chemical Geology, 26(3–4), 217–235.

    Article  Google Scholar 

  • Pisciotta, A., Perevozchikov, B. V., Osovetsky, B. M., Menshikova, E. A., & Kazymov, K. P. (2015). Quality assessment of melanocratic basalt for mineral fiber product, Southern Urals, Russia. Natural Resources Research, 24(3), 329–337.

    Article  Google Scholar 

  • Platzman, E. S., Tapirdamaz, C., & Sanver, M. (1998). Neogene anticlockwise rotation of central Anatolia (Turkey): Preliminary palaeomagnetic and geochronological results. Tectonophysics, 299(1–3), 175–189.

    Article  Google Scholar 

  • Şen, E. (1997). Erciyes Stratovolkanı’nın (Orta Anadolu) Volkanolojik ve Petrolojik Gelişiminin İncelenmesi. Hacettepe University.

    Google Scholar 

  • Seydibeyoğlu, M. Ö., Mohanty, A. K., & Misra, M. (2017). Introduction. In Fiber technology for fiber-reinforced composites (pp. 1–3). https://doi.org/10.1016/B978-0-08-101871-2.00001-1

  • Tatarintseva, O. S., & Khodakova, N. N. (2010). Obtaining basaltic continuous and staple fibers from rocks in Krasnodar Krai. Glass and Ceramics (english Translation of Steklo i Keramika), 67(5–6), 165–168.

    Article  Google Scholar 

  • Tatarintseva, O. S., & Khodakova, N. N. (2012). Effect of production conditions of basalt glasses on their physicochemical properties and drawing temperature range of continuous fibers. Glass Physics and Chemistry, 38(1), 89–95.

    Article  Google Scholar 

  • Tatarintseva, O. S., Khodakova, N. N., & Uglova, T. K. (2012). Dependence of the viscosity of basalt melts on the chemical composition of the initial mineral material. Glass and Ceramics (english Translation of Steklo i Keramika). https://doi.org/10.1007/s10717-012-9381-9

    Article  Google Scholar 

  • Thornton, C. P., & Tuttle, O. F. (1960). Chemistry of igneous rocks—[Part] 1, differentiation index. American Journal of Science. https://doi.org/10.2475/ajs.258.9.664

    Article  Google Scholar 

  • Yoder, H. S., & Tilley, C. E. (1962). Origin of basalt magmas: An experimental study of natural and synthetic rock systems. Journal of Petrology, 3(3), 342–532.

    Article  Google Scholar 

  • Zimin, D. E., & Khodakova, N. N. (2016). Chemical composition of rocks suitable for the production of basalt fibers resistant to corrosive media. Glass and Ceramics (english Translation of Steklo i Keramika), 73(3–4), 82–87.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. John Carranza and the anonymous reviewers for their valuable and constructive comments on an earlier draft of this paper. This study has benefited from the TÜBİTAK Project-119Y344 (The Scientific and Technological Research Council of Turkey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orkun Ersoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ersoy, O., Aydar, E., Çubukçu, H.E. et al. Differentiation Index: A New Proxy for Determining Suitability of Volcanic Rocks for Production of Different Fiber Types. Nat Resour Res 31, 117–130 (2022). https://doi.org/10.1007/s11053-021-09997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09997-0

Keywords

Navigation