Skip to main content

Advertisement

Log in

Geological Characterization of the Miocene–Pliocene Succession in the Semliki Basin, Uganda: Implications for Hydrocarbon Exploration and Drilling in the East African Rift System

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The Albertine Graben, an active sedimentary petroliferous basin, has gained global attention as the unexplored areas are recently being targeted for hydrocarbon prospectivity. Here, we present the first detailed geological investigation of the Upper Miocene–Pliocene clastic interval in the southern Lake Albert, part of the Semliki Basin. We employed an integrated approach that includes source rock evaluation, reservoir characterization, pore pressure, and geomechanical evaluation. Thermal maturity analyzed from vitrinite reflectance, spore color index, and Rock–Eval Tmax indicates that the Lower Kasande–Kakara shales are into the early catagenetic maturity, and the onset of oil window occurs at around 2550 m. With 1.8–2.4% total organic carbon content and dead carbon-free hydrogen index of ~ 600 mg S2/g TOC, a Type I/II oil-prone source rock was inferred, while the state of the thermal maturity reflects on the relatively low free oil yields associated with a poor oil production index. The quartz arenite reservoirs of the Upper Miocene Kasande–Kakara Formation exhibit excellent petrophysical characteristics and possess pore pressure gradients of 0.17–0.24 psi/ft (1 psi/ft = 22.6206 Mpa/km) in two distinct zones (2040.7–2221.5 m and 2554.7–2730 m) with gross vertical thickness of ~ 206 m. The region belongs to a normal faulting tectonic regime where the vertical stress gradient is 0.91–0.93 psi/ft with a lower bound of minimum horizontal stress gradient interpreted as 0.62 psi/ft. The hydrostatically pressured Miocene shales have higher shear failure gradients and exhibited extensive wellbore failures. The implications of geological characterization in both hydrocarbon exploration and future drilling in the basin are envisaged in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

adapted from Lukaye et al., 2016)

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Notes

  1. 1 bopd = 0.1589 cubic meter per day.

  2. 1 psi/ft = 22.6206 MPa/km.

  3. 1 mD (millidarcy) = 0.986923 * 10–15 m2.

  4. 1 ppg (pound per gallon) = 1.177 kPa/m.

References

  • Abdelghany, W. K., Radwan, A. E., Elkhawaga, M. A., Wood, D., Sen, S., & Kassem, A. A. (2021). Geomechanical modeling using the depth-of-damage approach to achieve successful underbalanced drilling in the Gulf of Suez Rift Basin. Journal of Petroleum Science and Engineering, 202, 108311.

    Google Scholar 

  • Abeinomugisha, D., & Kasande, R. (2012). Tectonic control on hydrocarbon accumulation in the intracontinental Albertine Graben of the East African rift system. In D. Gao (Ed.), Tectonics and sedimentation: Implications for petroleum systems: AAPG Memoir (Vol. 100, pp. 209–228). American Association of Petroleum Geologists. https://doi.org/10.1306/13351554M1003539

    Chapter  Google Scholar 

  • Agbasi, O. E., Sen, S., Inyang, N. J., & Etuk, S. E. (2021). Assessment of pore pressure, wellbore failure and reservoir stability in the Gabo field, Niger Delta, Nigeria—Implications for drilling and reservoir management. Journal of African Earth Sciences, 173, 104038.

    Google Scholar 

  • Alsharhan, A. S. (2003). Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt. AAPG Bulletin, 87(1), 143–180.

    Google Scholar 

  • Baban, D. H., & Ahmed, S. M. (2014). Vitrinite reflectance as a tool for determining level of thermal maturity for the Upper Jurassic Naokelekan and Barsarin Formations in Sargelu location, Kurdistan Region, NE Iraq. Arabian Journal of Geosciences, 7, 2269–2277.

    Google Scholar 

  • Baouche, R., Sen, S., Chaouchi, R., & Ganguli, S. S. (2021a). Modeling In-situ tectonic stress state and maximum horizontal stress azimuth in the Central Algerian Sahara—A geomechanical study from EL Agreb, El Gassi and Hassi Messaoud field. Journal of Natural Gas Science and Engineering, 88, 103831.

    Google Scholar 

  • Baouche, R., Sen, S., Debiane, K., & Ganguli, S. S. (2020b). Integrated reservoir characterization of the Paleozoic and Mesozoic sandstones of the El Ouar field, Algeria. Journal of Petroleum Science and Engineering, 194, 107551.

    Google Scholar 

  • Baouche, R., Sen, S., & Ganguli, S. S. (2020a). Pore pressure and in-situ stress magnitudes in the Bhiret Hammou hydrocarbon field, Berkine Basin, Algeria. Journal of Africa Earth Sciences, 171, 103945.

    Google Scholar 

  • Baouche, R., Sen, S., Ganguli, S. S., & Boutaleb, K. (2021c). Petrophysical and geomechanical characterization of the Late Cretaceous limestone reservoirs from the Southeastern Constantine Basin, Algeria. Interpretation, 9(4), 1–36.

    Google Scholar 

  • Baouche, R., Sen, S., Ganguli, S. S., & Feriel, H. A. (2021b). Petrophysical, geomechanical and depositional environment characterization of the Triassic TAGI reservoir from the Hassi Berkine South field, Berkine Basin, Southeastern Algeria. Journal of Natural Gas Science and Engineering, 91, 104002.

    Google Scholar 

  • Barnard, P. C., Collins, A. G., & Cooper, B. S. (1981). Identification and distribution of kerogen facies in a source rock horizon—Examples from the North Sea Basin. In J. Brooks (Ed.), Organic maturation studies and fossil fuel exploration (pp. 271–282). Academic Press.

    Google Scholar 

  • Calais, E., Ebinger, C., Hartndy, C., & Nocquet, J. M. (2006). Kinematics of the East African Rift from GPS and earthquake slip vector data. In G. Yirgu, C. J. Ebinger, & P. K. H. Macguire (Eds.), The afar volcanic province within the East African Rift system (Vol. 259, pp. 9–22). Geological Society London Special Publications.

    Google Scholar 

  • Cassie, B., Sheen, C., & Burden, P. (2015). Discovering oil in Uganda: Opening the East African rift play. In AAPG International Conference and Exhibition, Melbourne, Australia, Sept 13–16. Search and Discovery Article #110224.

  • Cheng, D., Lirong, D., Jianjun, W., Rubondo, E. N. T., Kasande, R., Byakagaba, A., & Mugisha, F. (2002). Geochemical characteristics of shales and oil seepages in the Albertine Graben. Geochimica (beijing), 31(6), 532–538. (in Chinese with English abstract).

    Google Scholar 

  • Chuanliang, Y., Jinger, D., Baohua, Y., & Jinxiang, L. (2013). Rock mechanical characteristics and wellbore stability in Kingfisher oilfield of Uganda. SOCAR Proceedings. https://doi.org/10.5510/OGP20130300164

    Article  Google Scholar 

  • Cloke, I., Cowley, S., & Rindfuss, R. (2018). Hydrocarbon exploration history of Uganda. GEOExPro, 15(5).

  • Dellisanti, F., Pini, G. A., & Baudin, F. (2010). Use of Tmax as a thermal maturity indicator in orogenic successions and comparison with clay mineral evolution. Clay Minerals, 45(1), 115–130.

    Google Scholar 

  • Delvaux, D., & Barth, A. (2010). African stress pattern from formal inversion of focal mechanism data. Tectonophysics, 482(1–4), 105–128.

    Google Scholar 

  • Demaison, G., & Huizinga, B. J. (1991). Genetic classification of petroleum systems. AAPG Bulletin, 75(10), 1626–1643.

    Google Scholar 

  • Dembicki, H., Jr. (2017). Chapter 3—Source rock evaluation. In H. Dembicki Jr. (Ed.), Practical petroleum geochemistry for exploration and production (pp. 61–133). Elsevier.

    Google Scholar 

  • Eaton, B. A., & Eaton, T. L. (1997). Fracture gradient prediction for the new generation. World Oil, 218, 93–100.

    Google Scholar 

  • Gagnevin, D., Tyrrell, S., Morton, A. C., Leather, J., Lee, N., Bordas-Le Floch, N., Frei, D., & Lukaye, J. (2017). Sand supply to the Lake Albert Basin (Uganda) during the Miocene–Pliocene: A multiproxy provenance approach. Geochemistry, Geophysics, Geosystems, 18, 2133–2148.

    Google Scholar 

  • Ganguli, S. S., Vedanti, N., Pandey, O. P., & Dimri, V. P. (2018). Deep thermal regime, temperature induced over-pressured zone and implications for hydrocarbon potential in the Ankleshwar oil field, Cambay basin, India. Journal of Asian Earth Sciences, 161, 93–102.

    Google Scholar 

  • Gholami, R., Moradzadeh, A., Rasouli, V., & Hanachi, J. (2014). Practical application of failure criteria in determining safe mud weight windows in drilling operations. Journal of Rock Mechanics and Geotechnical Engineering., 6(1), 13–25.

    Google Scholar 

  • Hollinsworth, A. D., Koehn, D., Dempster, T. J., & Aanyu, K. (2018). Structural controls on the interaction between basin fluids and a rift flank: Constraints from the Bwamba Fault, East African Rift. Journal of Structural Geology, 118, 236–249.

    Google Scholar 

  • Hooper, E. C. D. (1991). Fluid migration along growth faults in compacting sediments. Journal of Petroleum Geology, 14, 161–180.

    Google Scholar 

  • Jakeman, B. L., & Cook, A. C. (1978). The dispersion of some optical properties of vitrinite. Journal of Microscopy, 112(2), 183–195.

    Google Scholar 

  • Karner, G. D., Byamungu, B. R., Ebinger, C. J., Kampunzu, A. B., Mukasa, R. K., Nyakaana, J., Rubondo, E. N. T., & Upcott, N. M. (2000). Distribution of crustal extension and regional basin architecture of the Albertine rift system. East Africa. Marine and Petroleum Geology, 17(10), 1131–1150.

    Google Scholar 

  • Karp, T., Scholz, C. A., & Mcglue, M. M. (2012). Structure and stratigraphy of the Lake Albert Rift, East Africa: Observations from seismic reflection and gravity data. In O. W. Baganz, Y. Bartov, K. M. Bohacs, & D. Nummedal (Eds.), Lacustrine sandstone reservoirs and hydrocarbon systems (p. 95). AAPG Memoir. https://doi.org/10.1306/13291394M952903

    Chapter  Google Scholar 

  • Kassem, A. A., Sen, S., Radwan, A. E., Abdelghany, W. K., & Abioui, M. (2021). Effect of depletion and fluid injection in the Mesozoic and Paleozoic sandstone reservoirs of the October Oil Field, Central Gulf of Suez Basin: Implications on drilling, production and reservoir stability. Natural Resources Research, 30, 2587–2606.

    Google Scholar 

  • Kibria, M. G., Das, S., Hu, Q., Basu, A. R., Hu, W., & Mandal, S. (2020). Thermal maturity evaluation using Raman spectroscopy for oil shale samples of USA: Comparisons with vitrinite reflectance and pyrolysis methods. Petroleum Science, 17, 567–581.

    Google Scholar 

  • Koehn, D., Lindenfeld, M., Rümpker, G., Aanyu, K., Haines, S., Passchier, C. W., & Sachau, T. (2010). Active transsection faults in rift transfer zones: Evidence for complex stress fields and implications for crustal fragmentation processes in the western branch of the east African rift. International Journal of Earth Sciences, 99, 1633–1642.

    Google Scholar 

  • Lang, J., Li, S., & Zhang, J. (2011). Wellbore stability modeling and real-time surveillance for deep water drilling to weak bedding planes and depleted reservoirs. In SPE/IADC drilling conference and exhibition held in Amsterdam, The Netherlands, March 1–3. SPE-139708-MS. https://doi.org/10.2118/139708-MS.

  • Leila, M., Sen, S., Abioui, M., & Moscariello, A. (2021). Investigation of pore pressure, in-situ stress state and borehole stability in the West and South Al-Khilala hydrocarbon fields, Nile Delta, Egypt. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 7, 56.

    Google Scholar 

  • Li, S., Pang, X., Jin, Z., Li, M., Liu, K., Jiang, Z., Qiu, G., & Gao, Y. (2010). Molecular and isotopic evidence for mixed-source oils in subtle petroleum traps of the Dongying South Slope, Bohai Bay Basin. Marine and Petroleum Geology, 27(7), 1411–1423.

    Google Scholar 

  • Lirong, D., Jianjun, W., Dingsheng, C., Xuefeng, R., Rubondo, E. N. T., Kasande, R., Byakagaba, A., & Mugisha, F. (2004). Geological conditions and petroleum exploration potential of the Albertine Graben of Uganda. Acta Geologica Sinica, 78(4), 1002–1010.

    Google Scholar 

  • Lukaye, J., Worsley, D., Kiconco, L., Nabbanja, P., Abeinomugisha, D., Amusugut, C., Njabire, N., Nuwagaba, R., Mugisha, F., Ddungu, T., Sserubiri, T., & Sempala, V. (2016). Developing a coherent stratigraphic scheme of the Albertine Graben-East, Africa. Journal of Earth Science and Engineering, 6, 264–294.

    Google Scholar 

  • Matovu, G. R., Kibirango, J., Bidgood, T., Busingye, L., Cryan, J., & Dawson, K. (2015). Shallow geohazards assessment study for field development projects, Lake Albert Basin. In: International petroleum technology conference (IPTC), Doha, Qatar, Dec 6–9. IPTC-18412-MS. https://doi.org/10.2523/IPTC-18412-MS.

  • Min, G., & Hou, G. (2018). Geodynamics of the East African Rift System ∼30 Ma ago: A stress field model. Journal of Geodynamics, 117, 1–11.

    Google Scholar 

  • Morley, C. K. (2010). Stress re-orientation along zones of weak fabrics in rifts: An explanation for pure extension in ‘oblique’ rift segments? Earth and Planetary Science Letters, 297, 667–673.

    Google Scholar 

  • Ongin, T. (2013). Reservoir characterisation: Multi-scales Permeability data integration: Lake Albert Basin, Uganda. MSc Thesis, Dept. of Earth Science and Engineering, Imperial College London.

  • Patra, S., Dirghangi, S. S., Rudra, A., Dutta, S., Ghosh, S., Varma, A. K., Shome, D., & Kalpana, M. S. (2018). Effects of thermal maturity on biomarker distributions in Gondwana colas from the Satpura and Damodar Valley Basins, India. International Journal of Coal Geology, 196, 63–81.

    Google Scholar 

  • Pickford, M., Senut, B., & Hadoto, D. (1993). Geology and palaeobiology of the Albertine Rift Valley, Uganda-Zaire. Vol. I: Geology (Vol. 24, pp. 1–190). International Centre for Training and Exchanges in Geosciences Occasional Publications.

    Google Scholar 

  • Radwan, A. E. (2021a). Modeling the depositional environment of the sandstone reservoir in the middle miocene sidri member, badri field, Gulf of Suez Basin, Egypt: Integration of gamma-ray log patterns and petrographic characteristics of lithology. Natural Resources Research, 30, 431–449.

    Google Scholar 

  • Radwan, A. E. (2021b). Modeling pore pressure and fracture pressure using integrated well logging, drilling based interpretations and reservoir data in the Giant El Morgan oil Field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 178, 104165.

    Google Scholar 

  • Radwan, A. E., Abudeif, A. M., Attia, M. M., Elkhawaga, M. A., Abdelghany, W. K., & Kassem, A. A. (2020). Geopressure evaluation using integrated basin modelling, well-logging and reservoir data analysis in the northern part of the Badri oil field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 162, 103743.

    Google Scholar 

  • Radwan, A. E., Abudeif, A. M., Attia, M. M., & Mohammed, M. A. (2019). Pore and fracture pressure modeling using direct and indirect methods in Badri Field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 156, 133–143.

    Google Scholar 

  • Radwan, A. E., Rohais, S., & Chiarella, D. (2021a). Combined stratigraphic-structural play characterization in hydrocarbon exploration: A case study of Middle Miocene sandstones, Gulf of Suez basin, Egypt. Journal of Asian Earth Sciences, 218, 104686.

    Google Scholar 

  • Radwan, A., & Sen, S. (2021a). Stress path analysis for characterization of in situ stress state and effect of reservoir depletion on present-day stress magnitudes: reservoir geomechanical modeling in the Gulf of Suez Rift Basin, Egypt. Natural Resources Research, 30, 463–478.

    Google Scholar 

  • Radwan, A. E., & Sen, S. (2021b). Characterization of in-situ stresses and its implications for production and reservoir stability in the depleted El Morgan hydrocarbon field, Gulf of Suez Rift Basin, Egypt. Journal of Structural Geology, 148, 104355.

    Google Scholar 

  • Radwan, A. E., Trippetta, F., Kassem, A. A., & Kania, M. (2021b). Multi-scale characterization of unconventional tight carbonate reservoir: Insights from October oil filed, Gulf of Suez rift basin, Egypt. Journal of Petroleum Science and Engineering, 197, 107968.

    Google Scholar 

  • Riad, S., & El Etr, H. A. (1985). Bouguer anomalies and lithosphere-crustal thickness in Uganda. Journal of Geodynamics, 3(1–2), 169–186.

    Google Scholar 

  • Roberts, E. M., Stevens, N. J., O’Connor, P. M., Dirks, P. H. G. M., Gottfried, M. D., Clyde, W. C., Armstrong, R. A., Kemp, A. I. S., & Hemming, S. (2012). Initiation of the western branch of the East African Rift coeval with the eastern branch. Nature Geoscience, 5, 289–294.

    Google Scholar 

  • Rudra, A., Dutta, S., & Raju, S. V. (2017). The paleogene vegetation and petroleum system in the tropics: A biomarker approach. Marine and Petroleum Geology, 86, 38–51.

    Google Scholar 

  • Saria, E., Calais, E., Stamps, D. S., Delvaux, D., & Hartnady, C. J. H. (2014). Present-day kinematics of the East African Rift. Journal of Geophysical Research: Solid Earth, 119(4), 3584–3600.

    Google Scholar 

  • Schneider, S., Hornung, J., & Hinderer, M. (2016). Evolution of the western East African Rift system reflected in provenance changes of miocene to pleistocene synrift sediments (Albertine Rift, Uganda). Sedimentary Geology, 343, 190–205.

    Google Scholar 

  • Simon, B., Guillocheau, F., Robin, Cé., Dauteuil, O., Nalpas, T., Pickford, M., Senut, B., Lays, P., Bourges, P., & Bez, M. (2017). Deformation and sedimentary evolution of the Lake Albert Rift (Uganda, East African Rift System). Marine and Petroleum Geology, 86, 17–37.

    Google Scholar 

  • Stamps, D. S., Calais, E., Saria, E., Hartnady, C., Nocquet, J.-M., Ebinger, C. J., & Fernandes, R. M. (2008). A kinematic model for the East African Rift. Geophysical Research Letters, 35(5), L05304.

    Google Scholar 

  • Stamps, D. S., Flesch, L. M., Calais, E., & Ghosh, A. (2014). Current kinematics and dynamics of Africa and the East African Rift System. Journal of Geophysical Research Solid Earth, 119(6), 5161–5186.

    Google Scholar 

  • Tissot, B. P., Pelet, R., & Ungerer, P. H. (1987). Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation1. AAPG Bulletin, 71(12), 1445–1466.

    Google Scholar 

  • Waples, D. W. (1985). Analytical techniques. In D. W. Waples (Ed.), Geochemistry in petroleum exploration. Geological sciences series. Springer. https://doi.org/10.1007/978-94-009-5436-6_7

    Chapter  Google Scholar 

  • Wei, X., Lei, F., Xinye, Z., Penfegi, W., Xiaoli, Y., Xipu, Y., & Jun, L. (2017). Object-based 3D geomodel with multiple constraints for early Pliocene fan delta in the south of Lake Albert Basin, Uganda. Journal of African Earth Sciences, 125, 1–10.

    Google Scholar 

  • Xu, W., Zhang, X., Shang, F., Fang, L., Liu, J., & Yang, X. (2018). An integrated quantitative approach for determination of net reservoir cutoffs: A case study of Q oil field, Lake Albert, Uganda. Journal of African Earth Sciences, 145, 261–266.

    Google Scholar 

  • Yule, B., Roberts, S., Marshall, J. E. A., & Milton, J. A. (1998). Quantitative spore colour measurement using color image analysis. Organic Geochemistry, 28(3–4), 139–149.

    Google Scholar 

  • Zhang, J. (2013). Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes. International Journal of Rock Mechanics and Mining Sciences, 60, 160–170.

    Google Scholar 

  • Zoback, M. D. (2007). Reservoir geomechanics. Stanford University.

    Google Scholar 

Download references

Acknowledgments

Authors express their sincere gratitude to Professor John Carranza, Editor-in-Chief and the two learned reviewers for their critical suggestions and constructive reviews which benefited the manuscript. Authors are grateful to the Government of Uganda and the Ministry of Energy and Mineral Development, for providing the opportunity to use the dataset and permission to publish this work. Authors thank Dr. Sumit Verma, Mr. Jozef Szypulski (University of Texas Permian Basin) and Dr. S. Watson (Aarhus University, Denmark) for their assistance in improving the readability of the manuscript. Geologix Limited is acknowledged for providing access to the GEO Suite of software which had been instrumental for various analyses. The interpretation presented in this work is sole of authors and does not necessarily represent their respective organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutebi, S., Sen, S., Sserubiri, T. et al. Geological Characterization of the Miocene–Pliocene Succession in the Semliki Basin, Uganda: Implications for Hydrocarbon Exploration and Drilling in the East African Rift System. Nat Resour Res 30, 4329–4354 (2021). https://doi.org/10.1007/s11053-021-09951-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09951-0

Keywords

Navigation