Skip to main content
Log in

Equilibrium binding of isolated and in-plasma high-density lipoproteins (HDLs) to polystyrene nanoparticles

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

It is hypothesized that plasma proteins bind nanoparticles in vivo as they do in vitro, forming a protein corona. The resulting decorated nanoparticle surface could potentially alter nanoparticle pharmacokinetics, efficacy, and toxicity in vivo. A subset of the in vitro corona are high-density lipoproteins (HDLs). Since HDLs vary in patients based on diet, weight, and genetics, it is crucial to determine the affinity of HDLs for nanoparticles to generate a predictive model, which would provide information on the extent of HDL decoration on nanoparticles in the blood. Experiments that determined equilibrium affinities of HDLs for nanoparticles utilized isolated HDLs or HDL structural protein components such as ApoA-I. Thus, the effects of whole plasma on HDL-nanoparticle equilibrium binding are unclear. It is possible that competition from other plasma proteins for the nanoparticle surface could drastically change the affinity of HDLs for nanoparticles both in vitro and in vivo. Here, we determined effective equilibrium binding constants of Kdeff = 3.1 ± 0.7 μM, 1.2 ± 0.4 μM, and 2.0 ± 0.4 μM for polystyrene (PS), PS-COOH, and PS-NH2 nanospheres for ApoA-I, the main structural component of HDLs in whole mouse plasma. In comparison, binding constants were Kd = 400 nM, 900 nM, and 25 nM for PS, PS-COOH, and PS-NH2 nanospheres and HDLs isolated from mouse plasma. We utilized a binding model that is characterized by a nanoparticle with multiple identical and independent binding sites for HDLs. Our data show that HDL binding to nanoparticles could play a significant role in nanoparticle behavior in the vasculature of mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bisswanger H (2008) Multiple equilibria. In: Enzyme kinetics: principles and methods, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 13–20

    Chapter  Google Scholar 

  • Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G, Linse S, Dawson KA (2007) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756

    Article  CAS  Google Scholar 

  • Cukalevski R, Lundqvist M, Oslakovic C, Dahlbäck B, Linse S, Cedervall T (2011) Structural changes in apolipoproteins bound to nanoparticles. Langmuir 27:14360–14369

    Article  CAS  Google Scholar 

  • Daniels KG, Suo Y, Oas TG (2015) Conformational kinetics reveals affinities of protein conformational states. Proc Natl Acad Sci USA 112:9352–9357

    Article  CAS  Google Scholar 

  • Davidson WS (2018) LDL Proteome Watch. http://homepages.uc.edu/~davidswm/LDLproteome.html. Accessed 17 July 2018

  • Dell’Orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S (2010) Modeling the time evolution of the nanoparticle-protein Corona in a body fluid. PLoS One 5:e10949

    Article  Google Scholar 

  • Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF (2009) Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20:1–9

    Google Scholar 

  • Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 5:106–117

    Article  CAS  Google Scholar 

  • Duan Y, Liu Y, Shen W, Zhong W (2017) Fluorescamine labeling for assessment of protein conformational change and binding affinity in protein−nanoparticle interaction. Anal Chem 89:12160–12167

    Article  CAS  Google Scholar 

  • Fagerberg L, Hallstrom BM, Oksvold P et al (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13:397–406

    Article  CAS  Google Scholar 

  • Feingold KR, Grunfeld C (2019) Introduction to lipids and lipoproteins. In: Feingold KR, Anawalt B, Boyce A et al (eds) Endotext. MDText.com, Inc, South Dartmouth 2000-. https://www.ncbi.nlm.nih.gov/books/NBK305896/. Accessed 15 July 2019

    Google Scholar 

  • Freire E, Mayorga OL, Straume M (1990) Isothermal titration calorimetry. Anal Chem 62:950A–959A

    Article  CAS  Google Scholar 

  • Göppert TM, Müller RH (2005) Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur J Pharm Biopharm 60:361–372

    Article  Google Scholar 

  • Gordon SM, Li H, Zhu X, Shah AS, Lu LJ, Davidson WS (2015) A comparison of the mouse and human lipoproteome: suitability of the mouse model for studies of human lipoproteins. J Proteome Res 14:2686–2695

    Article  CAS  Google Scholar 

  • Gossmann R, Fahrländer E, Hummel M, Mulac D, Brockmeyer J, Langer K (2015) Comparative examination of adsorption of serum proteins on HSA- and PLGA-based nanoparticles using SDS–PAGE and LC–MS. Eur J Pharm Biopharm 93:80–87

    Article  CAS  Google Scholar 

  • Hutchins PM, Ronsein GE, Monette JS, Pamir N, Wimberger J, He Y, Anantharamaiah GM, Kim DS, Ranchalis JE, Jarvik GP, Vaisar T, Heinecke JW (2014) Quantification of HDL particle concentration by calibrated ion mobility analysis. Clin Chem 60:1393–1401

    Article  CAS  Google Scholar 

  • Kono M, Okumura Y, Tanaka M, Nguyen D, Dhanasekaran P, Lund-Katz S, Phillips MC, Saito H (2008) Conformational flexibility of the N-terminal domain of apolipoprotein A-I bound to spherical lipid particles. Biochemistry 47:11340–11347

    Article  CAS  Google Scholar 

  • Lauffenburger DA, Linderman JJ (1996) Cell surface receptor binding models. In: Receptors: models for binding, trafficking, and signaling. Oxford University Press, Oxford, pp 19–26

    Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cebervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105:14265–14270

    Article  CAS  Google Scholar 

  • Müller J, Prozeller D, Ghazaryan A, Kokkinopoulou M, Mailänder V, Morsbach S, Landfester K (2018) Beyond the protein corona—lipids matter for biological response of nanocarriers. Acta Biomater 71:420–431

    Article  Google Scholar 

  • Olbrich C, Gessner A, Schröder W, Kayser O, Müller RH (2004) Lipid–drug conjugate nanoparticles of the hydrophilic drug diminazene-cytotoxicity testing and mouse serum adsorption. J Control Release 96:425–435

    Article  CAS  Google Scholar 

  • Pamir N, Pan C, Plubell DL, Hutchins PM, Tang C, Wimberger J, Irwin A, Vallim TQA, Heinecke JW, Lusis AJ (2019) Genetic control of the mouse HDL proteome defines HDL traits, function, and heterogeneity. J Lipid Res 60:594–608

    Article  CAS  Google Scholar 

  • Pollard TD (2010) A Guide to Simple and Informative Binding Assays. Mol Biol Cell 21:4061–4067

    Article  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  • Shah AS, Tan L, Long JL, Davidson WS (2013) Proteomic diversity of high-density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J Lipid Res 54:2575–2585

    Article  CAS  Google Scholar 

  • Shang J, Gao X (2014) Nanoparticle counting: towards accurate determination of the molar concentration. Chem Soc Rev 43:7267–7278

    Article  CAS  Google Scholar 

  • Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  Google Scholar 

  • Tenzer S, Doctor D, Kuharev J, Musyanovych A et al (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781

    Article  CAS  Google Scholar 

  • Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799

    Article  CAS  Google Scholar 

  • Winzen S, Schoettler S, Baier G, Rosenauer C, Mailaender V, Landfester K, Mohr K (2015) Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition. Nanoscale 7:2992–3001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Eric Tague for mass spectrometry. We also thank Dr. Edward Wright and Liang Fang for their support with the isothermal titration calorimetry and gel filtration chromatography column, respectively.

Funding

This work was supported by the National Institute of General Medical Sciences R15GM116037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Dalhaimer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 24.4 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anozie, U.C., Quigley, K.J., Prescott, A. et al. Equilibrium binding of isolated and in-plasma high-density lipoproteins (HDLs) to polystyrene nanoparticles. J Nanopart Res 22, 223 (2020). https://doi.org/10.1007/s11051-020-04953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04953-0

Keywords

Navigation