Skip to main content

Advertisement

Log in

Optimization of nanostructured lipid carriers: understanding the types, designs, and parameters in the process of formulations

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Lipid-based nanoparticles for drug delivery have been employed in the development of nanomedicine for various applications. One such versatile nanoparticle type is nanostructured lipid carriers (NLCs) that include multiple combinations of lipids and drugs for diverse routes of administrations. Optimization of NLCs to achieve ideal particle size distribution, dispersion in the aqueous environment, long-term stability, drug protection ability, and targeting features is necessary for designing improved drug formulations. However, very few studies have attempted to discuss explicitly the sequential requirements for optimization. Besides, several compositional variables can confound the design of an NLC drug formulation, making it essential for critical evaluation of factors that affect the NLC’s physicochemical properties. Therefore, this review intends to discuss the multi-step process taken during optimization and highlight the components, methods, statistical designs, trends observed between the variables, and modifications of NLCs for targeted delivery, with the objectives of improving efficiency and increasing success rates in drug delivery studies.

Grapical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BBD:

Box-Behnken design

CCD:

central composite design

DLS:

dynamic light scattering

EPR:

enhanced permeation reaction

HLB:

hydrophile-lipophile balance

LCT:

long-chain triglyceride

MCT:

medium-chain triglyceride

MPS:

mononuclear phagocyte system

NLC:

nanostructured lipid carrier

PDI:

polydispersity index

PEG:

polyethylene glycol

PLGA:

poly (lactic-co-glycolic) acid

PVA:

polyvinyl alcohol

RSM:

response surface methodology

TCA:

taurocholic acid

WGA:

wheat germ agglutinin

References

  • Abouelmagd SA, Sun B, Chang AC, Ku YJ, Yeo Y (2015) Release kinetics study of poorly water-soluble drugs from nanoparticles: are we doing it right? Mol Pharm 12:997–1003

    CAS  Google Scholar 

  • Aguilar, Zoraida. 2012. Nanomaterials for medical applications (Newnes)

    Google Scholar 

  • Al-Qushawi A, Rassouli A, Atyabi F, Peighambari SM, Esfandyari-Manesh M, Shams GR, Yazdani A (2016) Preparation and characterization of three tilmicosin-loaded lipid nanoparticles: physicochemical properties and in-vitro antibacterial activities. Iran J Pharm Res 15:663–676

    CAS  Google Scholar 

  • Alam T, Khan S, Gaba B, Haider MF, Baboota S, Ali J (2018) Adaptation of quality by design-based development of isradipine nanostructured–lipid carrier and its evaluation for in vitro gut permeation and in vivo solubilization fate. J Pharm Sci 107:2914–2926

    CAS  Google Scholar 

  • Americas ICI (1984) The HLB system: a time-saving guide to emulsifier selection. ICI Americas, Incorporated

    Google Scholar 

  • Andalib S, Varshosaz J, Hassanzadeh F, Sadeghi H (2012) Optimization of LDL targeted nanostructured lipid carriers of 5-FU by a full factorial design. Adv Biomed Res 1:45

  • Araujo J, Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB (2010) Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm 393:167–175

    CAS  Google Scholar 

  • Arifin DY, Lee LY, Wang CH (2006) Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv Drug Deliv Rev 58:1274–1325

    CAS  Google Scholar 

  • Asumadu-Mensah A, Smith KW, Ribeiro HS (2013) Solid lipid dispersions: potential delivery system for functional ingredients in foods. J Food Sci 78:E1000–E1E08

    CAS  Google Scholar 

  • Attama, Anthony A, Mumuni A Momoh, and Philip F Builders. 2012. Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development. in, Recent advances in novel drug carrier systems (Intech)

  • Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205

    CAS  Google Scholar 

  • Bar-Zeev M, Livney YD, Assaraf YG (2017) Targeted nanomedicine for cancer therapeutics: towards precision medicine overcoming drug resistance. Drug Resist Updat 31:15–30

    Google Scholar 

  • Béduneau A, Saulnier P, Hindré F, Clavreul A, Leroux J-C, Benoit J-P (2007) Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab’ fragments. Biomaterials 28:4978–4990

    Google Scholar 

  • Beloqui A, Solinis MA, Delgado A, Evora C, del Pozo-Rodriguez A, Rodriguez-Gascon A (2013) Biodistribution of nanostructured lipid carriers (NLCs) after intravenous administration to rats: influence of technological factors. Eur J Pharm Biopharm 84:309–314

    CAS  Google Scholar 

  • Beloqui A, Solinis MA, Delgado A, Evora C, Isla A, Rodriguez-Gascon A (2014) Fate of nanostructured lipid carriers (NLCs) following the oral route: design, pharmacokinetics and biodistribution. J Microencapsul 31:1–8

    CAS  Google Scholar 

  • Beloqui A, Solinis MA, Rodriguez-Gascon A, Almeida AJ, Preat V (2016) Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine 12:143–161

    CAS  Google Scholar 

  • Betts JN, Johnson MG, Rygiewicz PT, King GA, Andersen CP (2013) Potential for metal contamination by direct sonication of nanoparticle suspensions. Environ Toxicol Chem 32:889–893

    CAS  Google Scholar 

  • Bhadra A, Karmakar G, Nahak P, Chettri P, Roy B, Guha P, Mandal AK, Nath RK, Panda AK (2017) Impact of detergents on the physiochemical behavior of itraconazole loaded nanostructured lipid carriers. Colloids Surf A Physicochem Eng Asp 516:63–71

    CAS  Google Scholar 

  • Bhadra D, Bhadra S, Jain P, Jain NK (2002) Pegnology: a review of PEG-ylated systems. Pharmazie 57:5–29

    CAS  Google Scholar 

  • Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O’Neill F, Roberts M (2018) Surfactant effects on lipid-based vesicles properties. J Pharm Sci 107:1237–1246

    CAS  Google Scholar 

  • Bouchemal K, Briançon S, Perrier E, Fessi H (2004) Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm 280:241–251

    CAS  Google Scholar 

  • Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475

    Google Scholar 

  • Box, George EP, and Kenneth B Wilson. 1992. 'On the experimental attainment of optimum conditions.' in, Breakthroughs in statistics (Springer)

  • Bummer, Paul M. 2004. 'Physical chemical considerations of lipid-based oral drug delivery—solid lipid nanoparticles', Critical Reviews™ in Therapeutic Drug Carrier Systems, 21

  • Campbell RB, Fukumura D, Brown EB, Mazzola LM, Izumi Y, Jain RK, Torchilin VP, Munn LL (2002) Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res 62:6831–6836

    CAS  Google Scholar 

  • Casettari L, Illum L (2014) Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 190:189–200

    CAS  Google Scholar 

  • Chaudhary S, Garg T, Murthy RS, Rath G, Goyal AK (2015) Development, optimization and evaluation of long chain nanolipid carrier for hepatic delivery of silymarin through lymphatic transport pathway. Int J Pharm 485:108–121

    CAS  Google Scholar 

  • Chirio D, Gallarate M, Peira E, Battaglia L, Muntoni E, Riganti C, Biasibetti E, Capucchio MT, Valazza A, Panciani P (2014) Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment. Eur J Pharm Biopharm 88:746–758

    CAS  Google Scholar 

  • Christensen JØ, Schultz K, Mollgaard B, Kristensen HG, Mullertz A (2004) Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium-and long-chain triacylglycerols. Eur J Pharm Sci 23:287–296

    CAS  Google Scholar 

  • D’Souza, Susan. 2014. 'A review of in vitro drug release test methods for nano-sized dosage forms', Advances in Pharmaceutics, 2014

  • das Neves J, Sarmento B (2015) Precise engineering of dapivirine-loaded nanoparticles for the development of anti-HIV vaginal microbicides. Acta Biomater 18:77–87

    Google Scholar 

  • Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12:62–76

    CAS  Google Scholar 

  • Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223

    CAS  Google Scholar 

  • Date AA, Vador N, Jagtap A, Nagarsenker MS (2011) Lipid nanocarriers (GeluPearl) containing amphiphilic lipid Gelucire 50/13 as a novel stabilizer: fabrication, characterization and evaluation for oral drug delivery. Nanotechnology 22:275102

    Google Scholar 

  • Deckert PM (2009) Current constructs and targets in clinical development for antibody-based cancer therapy. Curr Drug Targets 10:158–175

    CAS  Google Scholar 

  • Draper NR, Hunter WG (1966) Design of experiments for parameter estimation in multiresponse situations. Biometrika 53:525–533

    Google Scholar 

  • Dudhipala N, Janga KY, Gorre T (2018) Comparative study of nisoldipine-loaded nanostructured lipid carriers and solid lipid nanoparticles for oral delivery: preparation, characterization, permeation and pharmacokinetic evaluation. Artif Cells Nanomed Biotechnol 46:616–625

    CAS  Google Scholar 

  • Effendy I, Maibach HI (1995) Surfactants and experimental irritant contact dermatitis. Contact Dermatitis 33:217–225

    CAS  Google Scholar 

  • El Assasy AEI, Younes NF, Makhlouf AIA (2019) Enhanced oral absorption of amisulpride via a nanostructured lipid carrier-based capsules: development, optimization applying the desirability function approach and in vivo pharmacokinetic study. AAPS PharmSciTech 20:82

  • Elmowafy M, Shalaby K, Badran MM, Ali HM, Abdel-Bakky MS, Ibrahim HM (2018) Multifunctional carbamazepine loaded nanostructured lipid carrier (NLC) formulation. Int J Pharm 550:359–371

    CAS  Google Scholar 

  • Emami J, Rezazadeh M, Varshosaz J, Tabbakhian M, Aslani A (2012) Formulation of LDL targeted nanostructured lipid carriers loaded with paclitaxel: a detailed study of preparation, freeze drying condition, and in vitro cytotoxicity. J Nanomater 2012:1–10

    Google Scholar 

  • Fathi HA, Allam A, Elsabahy M, Fetih G, El-Badry M (2018) Nanostructured lipid carriers for improved oral delivery and prolonged antihyperlipidemic effect of simvastatin. Colloids Surf B Biointerfaces 162:236–245

    CAS  Google Scholar 

  • Fatouh, Ahmed M, Ahmed H Elshafeey, and Ahmed Abdelbary (2017) Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics. Drug Design, development and therapy, 11: 1815, 1825

  • Ferreira M, Chaves LL, Lima SA, Reis S (2015) Optimization of nanostructured lipid carriers loaded with methotrexate: a tool for inflammatory and cancer therapy. Int J Pharm 492:65–72

    CAS  Google Scholar 

  • Fishman JB, Rubin JB, Handrahan JV, Connor JR, Fine RE (1987) Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J Neurosci Res 18:299–304

    CAS  Google Scholar 

  • Gao X, Zhang J, Xu Q, Huang Z, Wang Y, Shen Q (2017) Hyaluronic acid-coated cationic nanostructured lipid carriers for oral vincristine sulfate delivery. Drug Dev Ind Pharm 43:661–667

    CAS  Google Scholar 

  • Garcia-Orue I, Gainza G, Girbau C, Alonso R, Aguirre JJ, Pedraz JL, Igartua M, Hernandez RM (2016) LL37 loaded nanostructured lipid carriers (NLC): a new strategy for the topical treatment of chronic wounds. Eur J Pharm Biopharm 108:310–316

    CAS  Google Scholar 

  • Gartziandia O, Herran E, Ruiz-Ortega JA, Miguelez C, Igartua M, Lafuente JV, Pedraz JL, Ugedo L, Hernandez RM (2016) Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with GDNF improves behavioral and histological recovery in a partial lesion model of Parkinson’s disease. J Biomed Nanotechnol 12:2220–2230

    CAS  Google Scholar 

  • Ghate VM, Lewis SA, Prabhu P, Dubey A, Patel N (2016) Nanostructured lipid carriers for the topical delivery of tretinoin. Eur J Pharm Biopharm 108:253–261

    CAS  Google Scholar 

  • Ghorab MAMDOUH, Gardouh AHMAD, Gad SHADEED (2015) Effect of viscosity, surfactant type and concentration on physicochemical properties of solid lipid nanoparticles. Int J Pharm Pharm Sci 7:145–153

    CAS  Google Scholar 

  • Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB (2010) Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B Biointerfaces 81:412–421

    CAS  Google Scholar 

  • Gordillo-Galeano A, Mora-Huertas CE (2018) Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 133:285–308

    CAS  Google Scholar 

  • Grislain L, Patrick C, Lenaerts V, Marie R, Deprez-Decampeneere D, Speiser P (1983) Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharm 15:335–345

    CAS  Google Scholar 

  • Gupta Y, Jain A, Jain SK (2007) Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharm Pharmacol 59:935–940

    CAS  Google Scholar 

  • Han F, Li S, Yin R, Liu H, Lu X (2008) Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: nanostructured lipid carriers. Colloids Surf A Physicochem Eng Asp 315:210–216

    CAS  Google Scholar 

  • Han Y, Zhang Y, Li D, Chen Y, Sun J, Kong F (2014) Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin. Int J Nanomedicine 9:4107–4116

    Google Scholar 

  • Harivardhan Reddy L, Vivek K, Bakshi N, Murthy RSR (2006) Tamoxifen citrate loaded solid lipid nanoparticles (SLN™): preparation, characterization, in vitro drug release, and pharmacokinetic evaluation. Pharm Dev Technol 11:167–177

    Google Scholar 

  • Hejri A, Khosravi A, Gharanjig K, Hejazi M (2013) Optimisation of the formulation of beta-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method. Food Chem 141:117–123

    CAS  Google Scholar 

  • Hibbert DB (2012) Experimental design in chromatography: a tutorial review. J Chromatogr B 910:2–13

    CAS  Google Scholar 

  • Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S (2005) Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B Biointerfaces 45:167–173

    CAS  Google Scholar 

  • Huang R, Li J, Kebebe D, Wu Y, Zhang B, Liu Z (2018) Cell penetrating peptides functionalized gambogic acid-nanostructured lipid carrier for cancer treatment. Drug Deliv 25:757–765

    CAS  Google Scholar 

  • Jawahar N, Hingarh PK, Arun R, Selvaraj J, Arigo A, Sathianarayanan S, Nagaraju G (2018) Enhanced oral bioavailability of an antipsychotic drug through nanostructured lipid carriers. Int J Biol Macromol 110:269–275

    CAS  Google Scholar 

  • Joshi M, Patravale V (2008) Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm 346:124–132

    CAS  Google Scholar 

  • Joshi M, Pathak S, Sharma S, Patravale V (2008) Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: Nanoject. Int J Pharm 364:119–126

    CAS  Google Scholar 

  • Karn-Orachai K, Smith SM, Phunpee S, Treethong A, Puttipipatkhachorn S, Pratontep S, Ruktanonchai UR (2014) The effect of surfactant composition on the chemical and structural properties of nanostructured lipid carriers. J Microencapsul 31:609–618

    CAS  Google Scholar 

  • Kasongo WA, Pardeike J, Müller RH, Walker RB (2011) Selection and characterization of suitable lipid excipients for use in the manufacture of didanosine-loaded solid lipid nanoparticles and nanostructured lipid carriers. J Pharm Sci 100:5185–5196

    CAS  Google Scholar 

  • Kaukonen, Ann Marie, Ben J Boyd, Christopher JH Porter, and William N Charman. 2004. 'Drug solubilization behavior during in vitro digestion of simple triglyceride lipid solution formulations', Pharm Res, 21: 245–253

  • Kaur P, Garg T, Goutam R, Rayasa Murthy RS, Goyal AK (2016) Development, optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using Box-Behnken design. Drug delivery 23:1912–1925

    CAS  Google Scholar 

  • Kaur S, Nautyal U, Singh R, Singh S, Devi A (2015) Nanostructure lipid carrier (NLC): the new generation of lipid nanoparticles. Asian Pac J Health Sci 2:76–93

    Google Scholar 

  • Kelidari HR, Moazeni M, Babaei R, Saeedi M, Akbari J, Parkoohi PI, Nabili M, Gohar AA, Morteza-Semnani K, Nokhodchi A (2017a) Improved yeast delivery of fluconazole with a nanostructured lipid carrier system. Biomed Pharmacother 89:83–88

    CAS  Google Scholar 

  • Kelidari HR, Saeedi M, Akbari J, Morteza-Semnani K, Valizadeh H, Maniruzzaman M, Farmoudeh A, Nokhodchi A (2017b) Development and optimisation of spironolactone nanoparticles for enhanced dissolution rates and stability. AAPS PharmSciTech 18:1469–1474

    CAS  Google Scholar 

  • Keshri L, Pathak K (2013) Development of thermodynamically stable nanostructured lipid carrier system using central composite design for zero order permeation of econazole nitrate through epidermis. Pharm Dev Technol 18:634–644

    CAS  Google Scholar 

  • Khan S, Shaharyar M, Fazil M, Baboota S, Ali J (2016) Tacrolimus-loaded nanostructured lipid carriers for oral delivery - optimization of production and characterization. Eur J Pharm Biopharm 108:277–288

    CAS  Google Scholar 

  • Khan S, Baboota S, Ali J, Khan S, Narang RS, Narang JK (2015) Nanostructured lipid carriers: an emerging platform for improving oral bioavailability of lipophilic drugs. International journal of pharmaceutical investigation 5:182

    CAS  Google Scholar 

  • Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics 2:128–149

    Google Scholar 

  • Kraisit P, Sarisuta N (2018) Development of triamcinolone acetonide-loaded nanostructured lipid carriers (NLCs) for buccal drug delivery using the Box-Behnken design. Molecules 23:982

    Google Scholar 

  • Kudarha R, Dhas NL, Pandey A, Belgamwar VS, Ige PP (2015) Box-Behnken study design for optimization of bicalutamide-loaded nanostructured lipid carrier: stability assessment. Pharm Dev Technol 20:608–618

    CAS  Google Scholar 

  • Kumar R, Yasir M, Saraf SA, Gaur PK, Kumar Y, Singh AP (2013) Glyceryl monostearate based nanoparticles of mefenamic acid: fabrication and in vitro characterization. Drug Invention Today 5:246–250

    CAS  Google Scholar 

  • Kumbhar DD, Pokharkar VB (2013) Engineering of a nanostructured lipid carrier for the poorly water-soluble drug, bicalutamide: physicochemical investigations. Colloids Surf A Physicochem Eng Asp 416:32–42

    Google Scholar 

  • Lasoń E, Sikora E, Miastkowska M, Escribano E, Garcia-Celma MJ, Solans C, Llinas M, Ogonowski J (2018) NLC as a potential carrier system for transdermal delivery of forskolin. Polonica, Acta Biochimica

    Google Scholar 

  • Lasoń, Elwira, Elżbieta Sikora, and Jan Ogonowski. 2013. 'Influence of process parameters on properties of nanostructured lipid carriers (NLC) formulation', Acta Biochimica Polonica, 60

  • Lémery E, Briançon S, Chevalier Y, Bordes C, Oddos T, Gohier A, Bolzinger M-A (2015) Skin toxicity of surfactants: structure/toxicity relationships. Colloids Surf A Physicochem Eng Asp 469:166–179

    Google Scholar 

  • Lewis MA (1990) Chronic toxicities of surfactants and detergent builders to algae: a review and risk assessment. Ecotoxicol Environ Saf 20:123–140

    CAS  Google Scholar 

  • Li H, Wang K, Yang X, Zhou Y, Ping Q, Oupicky D, Sun M (2017) Dual-function nanostructured lipid carriers to deliver IR780 for breast cancer treatment: anti-metastatic and photothermal anti-tumor therapy. Acta Biomater 53:399–413

    CAS  Google Scholar 

  • Li S, Ji Z, Zou M, Nie X, Shi Y, Cheng G (2011) Preparation, characterization, pharmacokinetics and tissue distribution of solid lipid nanoparticles loaded with tetrandrine. AAPS PharmSciTech 12:1011–1018

    CAS  Google Scholar 

  • Li Y, Wang J, Wientjes MG, Au JL (2012) Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv Drug Deliv Rev 64:29–39

    CAS  Google Scholar 

  • Lin WJ, Duh YS (2016) Nanostructured lipid carriers for transdermal delivery of acid labile lansoprazole. Eur J Pharm Biopharm 108:297–303

    CAS  Google Scholar 

  • Liu M, Chen D, Mukerabigwi JF, Chen S, Zhang Y, Lei S, Luo S, Wen Z, Cao Y, Huang X, He H (2016) Intracellular delivery of 10-hydroxycamptothecin with targeted nanostructured lipid carriers against multidrug resistance. J Drug Target 24:433–440

    CAS  Google Scholar 

  • Liu W, Tian R, Hu W, Jia Y, Jiang H, Zhang J, Zhang L (2012) Preparation and evaluation of self-microemulsifying drug delivery system of baicalein. Fitoterapia 83:1532–1539

    CAS  Google Scholar 

  • Liu Y, Wang L, Zhao Y, He M, Zhang X, Niu M, Feng N (2014) Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin. Int J Pharm 476:169–177

    CAS  Google Scholar 

  • Loo C, Basri M, Ismail R, Lau H, Tejo B, Kanthimathi M, Hassan H, Choo Y (2013) Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion. Int J Nanomedicine 8:13–22

    Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    CAS  Google Scholar 

  • Maruyama K, Ishida O, Kasaoka S, Takizawa T, Utoguchi N, Shinohara A, Chiba M, Kobayashi H, Eriguchi M, Yanagie H (2004) Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J Control Release 98:195–207

    CAS  Google Scholar 

  • Mehnert W, Mader K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    CAS  Google Scholar 

  • Miao J, Zhang X-g, Hong Y, Rao Y-f, Li Q, Xie X-j, Wo J-e, Li M-w (2012) Inhibition on hepatitis B virus e-gene expression of 10–23 DNAzyme delivered by novel chitosan oligosaccharide–stearic acid micelles. Carbohydr Polym 87:1342–1347

    CAS  Google Scholar 

  • Mills JK, Needham D (1999) Targeted drug delivery. Expert Opinion on Therapeutic Patents 9:1499–1513

    CAS  Google Scholar 

  • Mitri K, Shegokar R, Gohla S, Anselmi C, Muller RH (2011) Lipid nanocarriers for dermal delivery of lutein: preparation, characterization, stability and performance. Int J Pharm 414:267–275

    CAS  Google Scholar 

  • Monteiro LM, Lobenberg R, Cotrim PC, Barros de Araujo GL, Bou-Chacra N (2017) Buparvaquone nanostructured lipid carrier: development of an affordable delivery system for the treatment of leishmaniases. Biomed Res Int 2017:9781603

    Google Scholar 

  • Montgomery, Douglas C. 2017. Design and analysis of experiments (John wiley & sons)

  • Muller RH, Shegokar R, Keck CM (2011) 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr Drug Discov Technol 8:207–227

    Google Scholar 

  • Müller RH, MaÈder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Google Scholar 

  • Muller RH, Radtke M, Souto EB (2005) Nanostructured lipid carriers: a novel generation of solid lipid carriers. Pharm Technol Eur 17:45–50

    Google Scholar 

  • Müller RH, Radtke M, Wissing SA (2002) Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 242:121–128

    Google Scholar 

  • Mussi SV, Parekh G, Pattekari P, Levchenko T, Lvov Y, Ferreira LAM, Torchilin VP (2015) Improved pharmacokinetics and enhanced tumor growth inhibition using a nanostructured lipid carrier loaded with doxorubicin and modified with a layer-by-layer polyelectrolyte coating. Int J Pharm 495:186–193

    CAS  Google Scholar 

  • Nahak P, Karmakar G, Roy B, Guha P, Sapkota M, Koirala S, Chang C-H, Panda AK (2015) Physicochemical studies on local anaesthetic loaded second generation nanolipid carriers. RSC Adv 5:26061–26070

    CAS  Google Scholar 

  • Negi LM, Jaggi M, Talegaonkar S (2013) A logical approach to optimize the nanostructured lipid carrier system of irinotecan: efficient hybrid design methodology. Nanotechnology 24:015104

    Google Scholar 

  • Obeidat WM, Schwabe K, Muller RH, Keck CM (2010) Preservation of nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 76:56–67

    CAS  Google Scholar 

  • Oliveira DRB, Michelon M, de Figueiredo Furtado G, Sinigaglia-Coimbra R, Cunha RL (2016) beta-Carotene-loaded nanostructured lipid carriers produced by solvent displacement method. Food Res Int 90:139–146

    CAS  Google Scholar 

  • Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184

    CAS  Google Scholar 

  • Pardridge WM, Eisenberg J, Yang J (1987) Human blood-brain barrier transferrin receptor. Metabolism 36:892–895

    CAS  Google Scholar 

  • Park G-J (2007) Design of experiments. Analytic Methods for Design Practice:309–391

  • Park SJ, Garcia CV, Shin GH, Kim JT (2018) Improvement of curcuminoid bioaccessibility from turmeric by a nanostructured lipid carrier system. Food Chem 251:51–57

    CAS  Google Scholar 

  • Pathak, Yashwant, and Deepak Thassu. 2016. Drug delivery nanoparticles formulation and characterization (CRC Press)

  • Patil-Gadhe A, Pokharkar V (2014) Montelukast-loaded nanostructured lipid carriers: part I oral bioavailability improvement. Eur J Pharm Biopharm 88:160–168

    CAS  Google Scholar 

  • Patil-Gadhe A, Pokharkar V (2016) Pulmonary targeting potential of rosuvastatin loaded nanostructured lipid carrier: optimization by factorial design. Int J Pharm 501:199–210

  • Patil-Gadhe A, Kyadarkunte A, Patole M, Pokharkar V (2014) Montelukast-loaded nanostructured lipid carriers: part II pulmonary drug delivery and in vitro–in vivo aerosol performance. Eur J Pharm Biopharm 88:169–177

    CAS  Google Scholar 

  • Perrie, Yvonne, and Thomas Rades. 2012. FASTtrack Pharmaceutics: drug delivery and targeting (Pharmaceutical press)

  • Piacentini, Emma. 2016. 'Encapsulation efficiency.' in Enrico Drioli and Lidietta Giorno (eds.), Encyclopedia of membranes (Springer Berlin Heidelberg: Berlin, Heidelberg)

  • Pivetta TP, Simoes S, Araujo MM, Carvalho T, Arruda C, Marcato PD (2018) Development of nanoparticles from natural lipids for topical delivery of thymol: investigation of its anti-inflammatory properties. Colloids Surf B Biointerfaces 164:281–290

    CAS  Google Scholar 

  • Pizzol CD, Filippin-Monteiro FB, Restrepo JA, Pittella F, Silva AH, Alves de Souza P, Machado de Campos A, Creczynski-Pasa TB (2014) Influence of surfactant and lipid type on the physicochemical properties and biocompatibility of solid lipid nanoparticles. Int J Environ Res Public Health 11:8581–8596

    Google Scholar 

  • Plackett RL, Peter Burman J (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Google Scholar 

  • Pooja D, Kulhari H, Kuncha M, Rachamalla SS, Adams DJ, Bansal V, Sistla R (2016) Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles. Mol Pharm 13:3903–3912

    CAS  Google Scholar 

  • Preetha, P, A Srinivasa, and P Pushpalatha. 2015. 'Biphasic drug delivery in controlled release formulations–a review', International Journal Of Pharmacy &Technology, 6 (4): 3046–3060

  • Qu CY, Zhou M, Chen YW, Chen MM, Shen F, Xu LM (2015) Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy. Int J Nanomedicine 10:3911–3920

    CAS  Google Scholar 

  • Rajput A, Bariya A, Allam A, Othman S, Butani SB (2018) In situ nanostructured hydrogel of resveratrol for brain targeting: in vitro-in vivo characterization. Drug Deliv Transl Res 8:1460–1470

    CAS  Google Scholar 

  • Ranpise NS, Korabu SS, Ghodake VN (2014) Second generation lipid nanoparticles (NLC) as an oral drug carrier for delivery of lercanidipine hydrochloride. Colloids Surf B: Biointerfaces 116:81–87

    CAS  Google Scholar 

  • Rathod, Vishal R, Dhaval A Shah, and Rutesh H Dave. 2020. 'Systematic implementation of quality-by-design (QbD) to develop NSAID-loaded nanostructured lipid carriers for ocular application: preformulation screening studies and statistical hybrid-design for optimization of variables', Drug development and industrial pharmacy: 1–13

  • Ricci M, Puglia C, Bonina F, Di Giovanni C, Giovagnoli S, Rossi C (2005) Evaluation of indomethacin percutaneous absorption from nanostructured lipid carriers (NLC): in vitro and in vivo studies. J Pharm Sci 94:1149–1159

    CAS  Google Scholar 

  • Schmitt-Sody M, Strieth S, Krasnici S, Sauer B, Schulze B, Teifel M, Michaelis U, Naujoks K, Dellian M (2003) Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin Cancer Res 9:2335–2341

    CAS  Google Scholar 

  • Schubert MA, Müller-Goymann CC (2003) Solvent injection as a new approach for manufacturing lipid nanoparticles–evaluation of the method and process parameters. Eur J Pharm Biopharm 55:125–131

    CAS  Google Scholar 

  • Senna, Juliana Perdiz, Thaís Nogueira Barradas, Stephani Cardoso, Talita Carvalho Castiglione, Michael J Serpe, Kattya Gyselle de Holanda e Silva, and Claudia Regina Elias Mansur. 2018. 'Dual alginate-lipid nanocarriers as oral delivery systems for amphotericin B', Colloids Surf B: Biointerfaces, 166: 187–194

  • Severino P, Santana MH, Souto EB (2012) Optimizing SLN and NLC by 2(2) full factorial design: effect of homogenization technique. Mater Sci Eng C Mater Biol Appl 32:1375–1379

  • Severino P, Pinho SC, Souto EB, Santana MHA (2011) Polymorphism, crystallinity and hydrophilic–lipophilic balance of stearic acid and stearic acid–capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf B: Biointerfaces 86:125–130

    CAS  Google Scholar 

  • Shidhaye SS, Vaidya R, Sutar S, Patwardhan A, Kadam VJ (2008) Solid lipid nanoparticles and nanostructured lipid carriers-innovative generations of solid lipid carriers. Current drug delivery 5:324–331

    CAS  Google Scholar 

  • Singh SK, Hidau MK, Gautam S, Gupta K, Singh KP, Singh SK, Singh S (2018) Glycol chitosan functionalized asenapine nanostructured lipid carriers for targeted brain delivery: pharmacokinetic and teratogenic assessment. Int J Biol Macromol 108:1092–1100

    CAS  Google Scholar 

  • Sinhmar GK, Shah NN, Rawal SU, Chokshi NV, Khatri HN, Patel BM, Patel MM (2018) Surface engineered lipid nanoparticle-mediated site-specific drug delivery system for the treatment of inflammatory bowel disease. Artif Cells Nanomed Biotechnol 46:565–578

    CAS  Google Scholar 

  • Soleimanian Y, Goli SAH, Varshosaz J, Maestrelli F (2018) Propolis wax nanostructured lipid carrier for delivery of beta sitosterol: effect of formulation variables on physicochemical properties. Food Chem 260:97–105

    CAS  Google Scholar 

  • Souza LG, Silva EJ, Martins ALL, Mota MF, Braga RC, Lima EM, Valadares MC, Taveira SF, Marreto RN (2011) Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. Eur J Pharm Biopharm 79:189–196

    CAS  Google Scholar 

  • Stylianopoulos T, Poh MZ, Insin N, Bawendi MG, Fukumura D, Munn LL, Jain RK (2010) Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J 99:1342–1349

    CAS  Google Scholar 

  • Sun, Mingshuang, Zhihong Zhu, Huixin Wang, Shanshan Jin, Xinggang Yang, Cuiyan Han, and Weisan Pan. 2018. 'Polyarginine and PEG-AEYLR comodified nanostructured lipid carrier: 10mol% uncleavable PEG-AEYLR showed no shielding effect to polyarginine in vitro while maintaining good tumor targeting in vivo', Artificial cells, nanomedicine, and biotechnology, 46: 284–92

  • Taguchi, Genichi. 1960. 'Table of orthogonal arrays and linear graphs', Rep. Stat. Appl. Res., JUSE, 6: 1–52

  • Tan L, Sui J, Roberts CJ, Billa N (2019) Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm Dev Technol 24: 504–12 

  • Taratula O, Kuzmov A, Shah M, Garbuzenko OB, Minko T (2013) Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J Control Release 171:349–357

    CAS  Google Scholar 

  • Taveira SF, de Campos A, Luciana MP, de Santana DCAS, Nomizo A, de Freitas LAP, Lopez RFV (2012) Development of cationic solid lipid nanoparticles with factorial design-based studies for topical administration of doxorubicin. J Biomed Nanotechnol 8:219–228

    CAS  Google Scholar 

  • Tian C, Asghar S, Wu Y, Chen Z, Jin X, Yin L, Huang L, Ping Q, Xiao Y (2017) Improving intestinal absorption and oral bioavailability of curcumin via taurocholic acid-modified nanostructured lipid carriers. Int J Nanomedicine 12:7897–7911

    CAS  Google Scholar 

  • Tiwari R, Pathak K (2011) Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int J Pharm 415:232–243

    CAS  Google Scholar 

  • Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135

    CAS  Google Scholar 

  • Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11(Suppl 2):S81–S91

    CAS  Google Scholar 

  • Trapani G, Denora N, Trapani A, Laquintana V (2012) Recent advances in ligand targeted therapy. J Drug Target 20:1–22

    Google Scholar 

  • Tsai M-J, Wu P-C, Huang Y-B, Chang J-S, Lin C-L, Tsai Y-H, Fang J-Y (2012) Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting. Int J Pharm 423:461–470

    CAS  Google Scholar 

  • Üner M (2006) Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Die Pharmazie-An International Journal of Pharmaceutical Sciences 61:375–386

    Google Scholar 

  • Ustundag-Okur N, Gokce EH, Bozbiyik DI, Egrilmez S, Ozer O, Ertan G (2014) Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur J Pharm Sci 63:204–215

    CAS  Google Scholar 

  • Varshosaz J, Eskandari S, Tabbakhian M (2012) Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydr Polym 88:1157–1163

    CAS  Google Scholar 

  • Varshosaz J, Jafarian A, Salehi G, Zolfaghari B (2014) Comparing different sterol containing solid lipid nanoparticles for targeted delivery of quercetin in hepatocellular carcinoma. Journal of liposome research 24:191–203

    CAS  Google Scholar 

  • Velmurugan R, Selvamuthukumar S (2015) Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology. Appl Nanosci 6:159–173

    Google Scholar 

  • Vieira AC, Magalhaes J, Rocha S, Cardoso MS, Santos SG, Borges M, Pinheiro M, Reis S (2017) Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine (Lond) 12:2721–2736

    CAS  Google Scholar 

  • Wang H, Sun M, Li D, Yang X, Han C, Pan W (2018) Redox sensitive PEG controlled octaarginine and targeting peptide co-modified nanostructured lipid carriers for enhanced tumour penetrating and targeting in vitro and in vivo. Artif Cells Nanomed Biotechnol 46:313–322

    CAS  Google Scholar 

  • Wang Y, Zhang Y, Xu L, Sun M, Wei Z, Yu W, Gao A, Chen D, Zhao X, Feng X (2015) Exploring the effects of different types of surfactants on zebrafish embryos and larvae. Sci Rep 5:10107

    Google Scholar 

  • Wileman TE, Lennartz MR, Stahl PD (1986) Identification of the macrophage mannose receptor as a 175-kDa membrane protein. Proc Natl Acad Sci 83:2501–2505

    CAS  Google Scholar 

  • Wissing SA, Kayser O, Muller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56:1257–1272

    CAS  Google Scholar 

  • Woo JO, Misran M, Lee PF, Tan LP (2014) Development of a controlled release of salicylic acid loaded stearic acid-oleic acid nanoparticles in cream for topical delivery. ScientificWorldJournal 2014:205703

    CAS  Google Scholar 

  • Xiao B, Laroui H, Ayyadurai S, Viennois E, Charania MA, Zhang Y, Merlin D (2013) Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-alpha RNA interference for IBD therapy. Biomaterials 34:7471–7482

    CAS  Google Scholar 

  • Yang J, Ju Z, Dong S (2016) Cisplatin and paclitaxel co-delivered by folate-decorated lipid carriers for the treatment of head and neck cancer. Drug Deliv 24:792–799

    Google Scholar 

  • Yuan H, Wang LL, Du YZ, You J, Hu FQ, Zeng S (2007) Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids Surf B Biointerfaces 60:174–179

    CAS  Google Scholar 

  • Zadeh BSM, Niro H, Rahim F, Esfahani G (2018) Ocular delivery system for propranolol hydrochloride based on nanostructured lipid carrier. Sci Pharm 86:16

    Google Scholar 

  • Zhang J, Fan Y, Smith E (2009) Experimental design for the optimization of lipid nanoparticles. J Pharm Sci 98:1813–1819

    CAS  Google Scholar 

  • Zhang N, Ping Q, Huang G, Xu W, Cheng Y, Han X (2006) Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm 327:153–159

    CAS  Google Scholar 

  • Zhang W, Li X, Ye T, Chen F, Sun X, Kong J, Yang X, Pan W, Li S (2013a) Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology. Int J Pharm 454:354–366

    CAS  Google Scholar 

  • Zhang XY, Qiao H, Ni JM, Shi YB, Qiang Y (2013b) Preparation of isoliquiritigenin-loaded nanostructured lipid carrier and the in vivo evaluation in tumor-bearing mice. Eur J Pharm Sci 49:411–422

    CAS  Google Scholar 

  • Zhang X, Liu J, Qiao H, Liu H, Ni J, Zhang W, Shi Y (2010) Formulation optimization of dihydroartemisinin nanostructured lipid carrier using response surface methodology. Powder Technol 197:120–128

    CAS  Google Scholar 

  • Zhao XL, Yang CR, Yang KL, Li KX, Hu HY, Chen DW (2010) Preparation and characterization of nanostructured lipid carriers loaded traditional Chinese medicine, zedoary turmeric oil. Drug Dev Ind Pharm 36:773–780

    CAS  Google Scholar 

  • Zsikó S, Cutcher K, Kovács A, Budai-Szűcs M, Gácsi A, Baki G, Csányi E, Berkó S (2019) Nanostructured lipid carrier gel for the dermal application of lidocaine: comparison of skin penetration testing methods. Pharmaceutics 11:310

    Google Scholar 

Download references

Funding

The authors would like to thank the Center for Research in Biotechnology for Agriculture (CEBAR) for supporting this paper through their Research University grants, RU006-2017 and TU002F-2018.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the manuscript.

Corresponding author

Correspondence to Noor Hasima Nagoor.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramaniam, B., Siddik, Z.H. & Nagoor, N.H. Optimization of nanostructured lipid carriers: understanding the types, designs, and parameters in the process of formulations. J Nanopart Res 22, 141 (2020). https://doi.org/10.1007/s11051-020-04848-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04848-0

Keywords

Navigation