Skip to main content
Log in

Effect of ZnS layers on optical properties of prepared CdS/TiO2 nanotube arrays for photocatalyst

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The TiO2 nanotube arrays (TiO2 NTAs) prepared by re-oxidation were chosen as basement. The NTAs prepared through re-oxidation show smoother surface and more uniform tube mouth on large scale compared with the first as-grown one. We use successive ionic layer adsorption and reaction method to deposit quantum dots (ZnS and CdS) onto the sample successively. The findings reveal that two kinds of quantum dots (∼10 nm) distribute regularly and the nanotube mouth is open. From the UV–Vis absorption spectrum of samples, the red shift occurs after the sedimentation of the two quantum dots, which proves that the double modification can expand the absorption to 650 nm. Among all specimens, the sample produced by co-deposition has the highest speed of catalytic efficiency of 90.7% compared with bare TiO2 NTAs (52.9%) and just CdS QDs sensitized sample (65.8%). In the test of photocatalysis durability, the decay percentages of CdS/TiO2 NTAs and ZnS/CdS/TiO2 NTAs were 35.8 and 48.4%, respectively, which means that the ZnS passivation layer plays a crucial role in enhancing photocatalytic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  Google Scholar 

  • Chen SG, Paulose M, Ruan C, Mor GK, Varghese OK, Kouzoudis D, Grimes CA (2006) Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: preparation, characterization, and application to photoelectrochemical cells. J Photoch Photobio A 177:177–184

    Article  Google Scholar 

  • Deng XQ, Zhu XB, Sun ZG, Li XS, Liu JL, Shi C, Zhu AM (2016) Exceptional activity for photocatalytic mineralization of formaldehyde over amorphous titania nanofilms. Chem Eng J 306:1001–1009

    Article  Google Scholar 

  • Du K, Liu GH, Li MW, Wu CG, Chen XY, Wang KY (2016) Electrochemical reduction and capacitance of hybrid titanium dioxides-nanotube arrays and nanograss. Electrochim Acta 210:367–374

    Article  Google Scholar 

  • Gao XF, Li HB, Sun WT, Chen Q, Tang FQ, Peng LM (2009) CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes. J Phys Chem C 113:7531–7535

    Article  Google Scholar 

  • Ghicov A, Schmidt B, Kunze J, Schmuki P (2007) Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chem Phys Lett 433:323–326

    Article  Google Scholar 

  • Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334

    Article  Google Scholar 

  • Hou ZQ, Que WX, Ren JB, Xing YL, Javed HMA, Zhou T, Kong LB (2015) Fabrication and stability of opened-end TiO2 nanotube arrays based dye-sensitized solar cells. Ceram Int 41:S719–S724

    Article  Google Scholar 

  • Hsu SH, Hung SF, Chien SH (2013) Sensitized vertically aligned single crystal TiO2 nanorods on transparent conducting glass with improved solar cell efficiency and stability using ZnS passivation layer. J Power Sources 233:236–243

    Article  Google Scholar 

  • Huang L, Peng F, Yu H, Wang HJ (2009) Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion. Solid State Sci 11:129–138

    Article  Google Scholar 

  • Khan SA, Phase AA (2013) Size and shape transformation by fungal biotransformation of bulk TiO2. Chem Eng J 230:367–371

    Article  Google Scholar 

  • Kim D, Ghicov A, Schmuki P (2008) TiO2 nanotube arrays: elimination of disordered top layers (“nanograss”) for improved photoconversion efficiency in dye-sensitized solar cells. Electrochem Commun 10(12):1835–1838

    Article  Google Scholar 

  • Lavanya T, Satheesh K, Dutta M, Jaya NV, Fukata N (2014) Superior photocatalytic performance of reduced graphene oxide wrapped electrospun anatase mesoporous TiO2 nanofibers. J Alloy Compd 615:643–650

    Article  Google Scholar 

  • Lee HJ, Wang MK, Chen P, Gamelin DR, Zakeeruddin SM, Grätzel M, Nazeeruddin MK (2009) Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett 9:4221–4227

    Article  Google Scholar 

  • Li XQ, Cheng Y, Liu LF, Mu J (2010) Enhanced photoelectrochemical properties of TiO2 nanotubes co-sensitized with CdS nanoparticles and tetrasulfonated copper phthalocyanine. Colloid Surfaces A 353:226–231

    Article  Google Scholar 

  • Li Q, Shang JK (2009) Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance. Environ Sci Technol 43:8923–8929

    Article  Google Scholar 

  • Li YK, Yu HM, Zhang CK, Song W, Li GF, Shao ZG, Yi BL (2013) Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell. Electrochim Acta 107:313–319

    Article  Google Scholar 

  • Liú D, Wang GQ, Liŭ D, Lin JH, He YQ, Li XR, Li ZH (2016) Photocatalysis using zero-valent nano-copper for degrading methyl orange under visible light irradiation. Opt Mater 53:155–159

    Article  Google Scholar 

  • Liu SH, Yang LX, Xu SH, Luo SL, Cai QY (2009) Photocatalytic activities of C-N-doped TiO2 nanotubearray/carbon nanorod composite. Electrochem Commun 11:1748–1751

    Article  Google Scholar 

  • Lu N, Quan X, Li JY, Chen S, Yu HT, Chen GH (2007) Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J Phys Chem C 111:11836–11842

    Article  Google Scholar 

  • Lv P, Fu WY, Mu YN, Sun HR, Su S, Chen YL, Yao HZ, Ding D, Liu T, Wang J, Yang HB (2015) Photoelectrochemical property of CdS and PbS cosensitized on the TiO2 array by novel successive ionic layer adsorption and reaction method. J Alloy Compd 621:30–34

    Article  Google Scholar 

  • Mohapatra SK, Misra M, Mahajan VK, Raja KS (2007) Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2-xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. J Phys Chem C 111:8677–8685

    Article  Google Scholar 

  • Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  Google Scholar 

  • Park H, Yang C, Choi WY (2012) Organic and inorganic surface passivations of TiO2 nanotube arrays for dye-sensitized photoelectrodes. J Power Sources 216:36–41

    Article  Google Scholar 

  • Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Edit 50:2904–2939

    Article  Google Scholar 

  • Seabold JA, Shankar K, Wilke RHT, Paulose M, Varghese OK, Grimes CA, Choi KS (2008) Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem Mater 20:5266–5273

    Article  Google Scholar 

  • Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng XJ, Paulose M, Seabold JA, Choi K, Grimes CA (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359

    Article  Google Scholar 

  • Si PZ, Ge HL, Wei GY, Li H, Zhong GXM, Wei Z (2010) Preparation of iron-doped titania nanocrystalline grains and its photocatalytic property. J Chinese Ceram Soc 38:68–73

    Google Scholar 

  • Sun L, Cai JH, Wu Q, Huang P, Su YF, Lin CJ (2013) N-doped TiO2 nanotube array photoelectrode for visible-light-induced photoelectrochemical and photoelectrocatalytic activities. Electrochim Acta 108:525–531

    Article  Google Scholar 

  • Sun DD, Wu Y, Gao P (2014) Effects of TiO2 nanostructure and operating parameters on optimized water disinfection processes: a comparative study. Chemical Eng J 249:160–166

    Article  Google Scholar 

  • Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124–1125

    Article  Google Scholar 

  • Wang HY, Zhu W, Chong BH, Qin K (2014) Improvement of photocatalytic hydrogen generation from CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure. Int J Hydrogen Energ 39:90–99

    Article  Google Scholar 

  • Xiao F (2012a) An efficient layer-by-layer self-assembly of metal-TiO2 nanoring/nanotube heterostructures, M/T-NRNT (M=Au, Ag, Pt), for versatile catalytic applications. Chem Commun 48:6538–6540

    Article  Google Scholar 

  • Xiao FX (2012b) Layer-by-layer self-assembly construction of highly ordered metal-TiO2 nanotube arrays heterostructures (M/TNTs, M=Au, Ag, Pt) with tunable catalytic activities. J Phys Chem C 116:16487–16498

    Article  Google Scholar 

  • Xiao FX, Miao J, Wang HY, Liu B (2013) Self-assembly of hierarchically ordered CdS quantum dots-TiO2 nanotube array heterostructures as efficient visible light photocatalysts for photoredox applications. J Mater Chem A 1:12229–12238

    Article  Google Scholar 

  • Yu LH, Chen W, Li DZ, Wang JB, Shao Y, He M, Wang P, Zheng XZ (2015) Inhibition of photocorrosion and photoactivity enhancement for ZnO via specific hollow ZnO core/ZnS shell structure. Appl Catal B 164:453–461

    Article  Google Scholar 

  • Zhang M, Li DM, Zhou JR, Chen WY, Ruan SP (2015) Ultraviolet detector based on TiO2 nanowire array-polymer hybrids with low dark current. J Alloy Compd 618:233–235

    Article  Google Scholar 

  • Zhang XJ, Lin SW, Liao JJ, Pan NQ, Li DH, Cao XK, Li JB (2013) Uniform deposition of water-soluble CdS quantum dots on TiO2 nanotube arrays by cyclic voltammetric electrodeposition: effectively prevent aggregation and enhance visible-light photocatalytic activity. Electrochim Acta 108:296–303

    Article  Google Scholar 

  • Zhang YH, Zhang N, Tang ZR, Xu YJ (2012) Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 6:9777–9789

    Article  Google Scholar 

  • Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by State Key Program for Basic Research of China (2013CB632705), National Natural Science Foundation of China (No. 11334008, 11304011, 51472003, 61671017), the Doctor Scientific Research Fund of Anhui University (J01001927), the Youth Core Teacher Fund of Anhui University (J01005111), the Foundation of Co-operative Innovation Research Center for Weak Signal-Detecting Materials and Devices Integration Anhui University (Y01008411), the Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences (2016KLMP01), Anhui Provincial Natural Science Foundation of China (1508085ME72), Provincial Natural Science Foundation of Anhui Higher Education Institution of China (KJ2016A787). The authors would like to thank Yonglong Zhuang and Zhongqing Lin of the Experimental Technology Center of Anhui University, for electron microscope test and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoqi Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Gong, Z., Tao, J. et al. Effect of ZnS layers on optical properties of prepared CdS/TiO2 nanotube arrays for photocatalyst. J Nanopart Res 19, 120 (2017). https://doi.org/10.1007/s11051-017-3799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3799-5

Keywords

Navigation