Skip to main content
Log in

Hierarchical porous nitrogen-doped partial graphitized carbon monoliths for supercapacitor

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Porous carbon monoliths have attracted great interest in many fields due to their easy availability, large specific surface area, desirable electronic conductivity, and tunable pore structure. In this work, hierarchical porous nitrogen-doped partial graphitized carbon monoliths (N–MC–Fe) with ordered mesoporous have been successfully synthesized by using resorcinol-formaldehyde as precursors, iron salts as catalyst, and mixed triblock copolymers as templates via a one-step hydrothermal method. In the reactant system, hexamethylenetetramine (HMT) is used as nitrogen source and one of the carbon precursors under hydrothermal conditions instead of using toxic formaldehyde. The N–MC–Fe show hierarchically porous structures, with interconnected macroporous and ordered hexagonally arranged mesoporous. Nitrogen element is in situ doped into carbon through decomposition of HMT. Iron catalyst is helpful to improve the graphitization degree and pore volume of N–MC–Fe. The synthesis strategy is user-friendly, cost-effective, and can be easily scaled up for production. As supercapacitors, the N–MC–Fe show good capacity with high specific capacitance and good electrochemical stability.

Hierarchical porous nitrogen-doped partial graphitized carbon monoliths with ordered mesoporous have been successfully synthesized by using resorcinol-formaldehyde as precursors, iron as catalyst, and mixed triblock copolymers as templates via a one-step hydrothermal method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chang K, Lim Z, Du F, Yang Y, Chang C, Hu C, Lin H (2009) Synthesis of mesoporous carbon by using polymer blend as template for the high power supercapacitor. Diamond & Related Materials 18:448–451. doi:10.1016/j.diamond.2008.10.003

    Article  Google Scholar 

  • Chen X, Kierzek K, Cendrowsk K, Pelech I, Zhao X, Feng J, Kalencuk R, Tang T, Mijowska E (2012) CVD generated mesoporous hollow carbon spheres as supercapacitors. Colloids and Surfaces A: Physicochem Eng Aspects 396:246–250. doi:10.1016/j.colsurfa.2012.01.002

    Article  Google Scholar 

  • Chen AB, Wang YY, Li Q, Yu YF, Li YT, Zhang Y, Li YQ, Xia KC, Li SH (2016) Synthesis of nitrogen-doped micro-mesoporous carbon for supercapacitors. J Electrochem Soc 163(9):A1959–A1964. doi:10.1149/2.0711609jes

    Article  Google Scholar 

  • Cheng GJ, Calizo I, Hacker CA, Richter CA, Walker ARH (2016) Fe-catalyzed etching of exfoliated graphite through carbon hydrogenation. Carbon 96:311–315. doi:10.1016/j.carbon.2015.09.079

    Article  Google Scholar 

  • Deng YF, Xie Y, Zou KX, Ji XL (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4:1144–1111. doi:10.1039/C5TA08620E

    Article  Google Scholar 

  • Feng HB, Hu H, Dong HW, Xiao Y, Cai YJ, Lei BF, Liu YL, Zheng M (2016) Hierarchical structured carbon derived from bagasse wastes: a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J Power Sources 302:164–173. doi:10.1016/j.jpowsour.2015.10.063

    Article  Google Scholar 

  • Garcia-Gomez A, Miles P, Centeno TA, Rojo JM (2010) Uniaxially oriented carbon monoliths as supercapacitor electrodes. Electrochim Acta 55:8539–8544. doi:10.1016/j.electacta.2010.07.072

    Article  Google Scholar 

  • Goodman PA, Li H, Gao Y, Lu YF, Stenger-Smith JD, Redepenning J (2013) Preparation and characterization of high surface area, high porosity carbon monoliths from pyrolyzed bovine bone and their performance as supercapacitor electrodes. Carbon 55:291–298. doi:10.1016/j.carbon.2012.12.066

    Article  Google Scholar 

  • Guan C, Liu JL, Wang YD, Mao L, Fan ZX, Shen ZX, Zhang H, Wang J (2015) Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9(5):5198–5207. doi:10.1021/acsnano.5b00582

    Article  Google Scholar 

  • Hao GP, Li WC, Wang S, Wang GH, Qi L, Lu AH (2011) Lysine-assisted rapid synthesis of crack-free hierarchical carbon monoliths with a hexagonal array of mesopores. Carbon 49:3762–3772. doi:10.1016/j.carbon.2011.05.010

    Article  Google Scholar 

  • Hoekstra J, Beale AM, Soulimani F, Versluijs-Helder M, Kleut D, Koelewijn JM, Geus JW, Jenneskens LW (2016) The effect of iron catalyzed graphitization on the textural properties of carbonized cellulose: magnetically separable graphitic carbon bodies for catalysis and remediation. Carbon 107:248–260. doi:10.1016/j.carbon.2016.05.065

    Article  Google Scholar 

  • Huang Y, Cai HQ, Feng D, Gu D, Deng YH, Tu B, Wang HT, Webley PA, Zhao DY (2008) One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem Commun:2641–2643. doi:10.1039/B804716B

  • Huang C, Hsu C, Kuo P, Hsien C, Feng H (2009) Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. Carbon 49:895–903. doi:10.1016/j.carbon.2010.10.053

    Article  Google Scholar 

  • Huang K, Chai SH, Mayes RT, Tan SA, Jones CW, Dai S (2016) Significantly increasing porosity of mesoporous carbon by NaNH2 activation for enhanced CO2 adsorption. Microporous Mesoporous Mater 230:100–108. doi:10.1016/j.micromeso.2016.04.041

    Article  Google Scholar 

  • Huber L, Ruch P, Hauert R, Saucke G, Matam SK, Michel B, Koebel MM (2016) Monolithic nitrogen doped carbon as water sorbent for highperformance adsorption cooling. RSC Adv 6:25267–25278. doi:10.1039/C6RA00548A

    Article  Google Scholar 

  • Ji JY, Zhang LL, Ji HX, Li Y, Zhao X, Bai X, Fan XB, Zhang FB, Ruoff RS (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243. doi:10.1021/nn4021955

    Article  Google Scholar 

  • Kim HK, Kamali AR, Roh KC, Kimb KB, Fray DJ (2016) Dual coexisting interconnected graphene nanostructures for high performance supercapacitor applications. Energy Environ Sci 9:2249–2256. doi:10.1039/C6EE00815A

    Article  Google Scholar 

  • Klepel O, Danneberg N, Dräger M, Erlitz M, Taubert M (2016) Synthesis of porous carbon monoliths using hard templates. Materials 9:214. doi:10.3390/ma9030214

    Article  Google Scholar 

  • Li Y, Fu ZY, Su BL (2012) Hierarchically structured porous materials for energy conversion and storage. Adv Funct Mater 22(22):4634–4667. doi:10.1002/adfm.201200591

    Article  Google Scholar 

  • Li H, Tao Y, Zheng XY, Li ZJ, Liu DH, Xu Z, Luo C, Luo JY, Kang FY, Yang QH (2015a) Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance. Nanoscale 7:18459–18463. doi:10.1039/C5NR06113J

    Article  Google Scholar 

  • Li J, Liu K, Gao X, Yao B, Huo K, Cheng Y, Cheng X, Chen D, Wang B, Ding D, Liu M, Huang L (2015b) Oxygen and nitrogen enriched 3D porous carbon for supercapacitors of high volumetric capacity. ACS Appl Mater Interfaces 7:24622–24628. doi:10.1021/acsami.5b06698

    Article  Google Scholar 

  • Li Y, Li DW, Zhao XB, Wu MB (2016) Superior CO2, CH4, and H uptakes over ultrahigh surface-area carbon spheres prepared from sustainable biomass-derived char by CO2 activation. Carbon 105:454–462. doi:10.1016/j.carbon.2016.04.036

    Article  Google Scholar 

  • Liu L, Wang FY, Shao GS, Yuan ZY (2010) A low-temperature autoclaving route to synthesize monolithic carbon materials with an ordered mesostructured. Carbon 48:2089–2099. doi:10.1016/j.carbon.2010.02.022

    Article  Google Scholar 

  • Liu R, Mahurin SM, Li C, Unocic RR, Idrobo JC, Gao HJ, Pennycook SJ, Dai S (2011a) Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew Chem Int Ed 50:6799–6802. doi:10.1016/j.carbon.2016.01.043

    Article  Google Scholar 

  • Liu D, Lei JH, Guo LP, Deng KJ (2011b) Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine. Carbon 49:2113–2119. doi:10.1016/j.carbon.2011.01.047

    Article  Google Scholar 

  • Liu L, Deng QF, Hou XX, Yuan ZY (2012) User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture. J Mater Chem 22:15540–15548. doi:10.1039/C2JM31441J

    Article  Google Scholar 

  • Liu DH, Guo Y, Zhang LH, Li WC, Sun T, Lu AH (2013) Switchable transport strategy to deposit active Fe/Fe3C cores into hollow microporous carbons for efficient chromium removal. Small 9(22):3852–3857. doi:10.1002/smll.201300276

    Article  Google Scholar 

  • Matter PH, Zhang L, Ozkan US (2006) The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J Catal 239:83–96. doi:10.1016/j.jcat.2006.01.022

    Article  Google Scholar 

  • Mun Y, Jo C, Hyeon T, Lee J, Ha KS, Jun KW, Lee SH, Hong SW, Lee HI, Yoon S, Lee J (2013) Simple synthesis of hierarchically structured partially graphitized carbon by emulsion/block copolymer co-template method for high power supercapacitors. Carbon 64:391–402. doi:10.1016/j.carbon.2013.07.092

    Article  Google Scholar 

  • Nettelroth D, Schwarz HC, Burblies N, Guschanski N, Behrens P (2016) Catalytic graphitization of ordered mesoporous carbon CMK-3 with iron oxide catalysts: evaluation of different synthesis pathways. Phys Status Solidi A 213(6):1395–1402. doi:10.1002/pssa.201532796

    Article  Google Scholar 

  • Pachfule P, Shinde D, Majumder M, Xu Q (2016) Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat Chem 8:718–724. doi:10.1038/nchem.2515

    Article  Google Scholar 

  • Ruiz V, Blanco C, Santamaría R, Ramos-Fernández JM, Martı′nez-Escandell M, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2009) An activated carbon monolith as an electrode material for supercapacitors. Carbon 47:195–200. doi:10.1016/j.carbon.2008.09.048

    Article  Google Scholar 

  • Safari J, Gandomi-Ravandi S, Ashiri S (2016) Organosilane sulfonated graphene oxide in the biginelli and biginelli-like reactions. New J Chem 40:512–520. doi:10.1039/C5NJ01741F

    Article  Google Scholar 

  • Sánchez-Sánchez A, Fierro V, Izquierdo MT, Celzard A (2016) Functionalized, hierarchical and ordered mesoporous carbons for high-performance supercapacitors. J Mater Chem A 4:6140–6148. doi:10.1039/C6TA00738D

    Article  Google Scholar 

  • Santora BP, Gagné MR (2001) Porogen and cross-linking effects on the surface area, pore volume distribution, and morphology of macroporous polymers obtained by bulk polymerization. Macromolecules 34(3):658–661. doi:10.1021/ma0004817

    Article  Google Scholar 

  • Shen Y, Li L, Xi JY, Qiu XP (2016) A facile approach to fabricate free-standing hydrogen evolution electrodes: riveting tungsten carbide nanocrystals to graphite felt fabrics by carbon nanosheets. J Mater Chem A 4:5817–5822. doi:10.1039/C6TA01236A

    Article  Google Scholar 

  • Siyasukha A, Maneeproma P, Larpkiattawornd S, Tonanona N, Tanthapanichakoon W, Tamonc H, Charinpanitkul T (2008) Preparation of a carbon monolith with hierarchical porous structure by ultrasonic irradiation followed by carbonization, physical and chemical activation. Carbon 46:1309–1315. doi:10.1016/j.carbon.2008.05.006

    Article  Google Scholar 

  • Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1:6462–6470. doi:10.1039/C3TA10897J

    Article  Google Scholar 

  • Tao Y, Xie XY, Lv W, Tang DM, Kong DB, Huang ZH, Nishihara H, Ishii T, Li BH, Golberg D, Kang FY, Kyotani T, Yang QH (2013) Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Scientific Reports 3:2975. doi:10.1038/srep02975

    Google Scholar 

  • Velasco LF, Guillet-Nicolas R, Dobos G, Thommes M, Lodewyckx P (2016) Towards a better understanding of water adsorption hysteresis in activated carbons by scanning isotherms. Carbon 96:753–758. doi:10.1038/srep02975

    Article  Google Scholar 

  • Wang Q, Yan J, Wang YB, Wei T, Zhang ML, Jing XY, Fan ZJ (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127. doi:10.1016/j.carbon.2013.09.070

    Article  Google Scholar 

  • Wang C, Li Y, He X, Ding Y, Peng Q, Zhao W, Shi E, Wu S, Cao A (2015a) Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene. Nanoscale 7:7550–7558. doi:10.1039/C5NR00996K

    Article  Google Scholar 

  • Wang XM, Pei YF, Lu MX, Lu XQ, Du XZ (2015b) Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials. J Mater Sci 50:2113–2121. doi:10.1007/s10853-014-8773-3

    Article  Google Scholar 

  • Wang YG, Bai X, Wang F, Qin HF, Yin CC, Kang SF, Li X, Zuo YH, Cui LF (2016a) Surfactant-assisted nanocasting route for synthesis of highly ordered mesoporous graphitic carbon and its application in CO2 adsorption. Scientific Reports 6:26673. doi:10.1038/srep26673

    Article  Google Scholar 

  • Wang LP, Jia WS, Liu XF, Li JZ, Titirici MM (2016b) Sulphur-doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction. Journal of Energy Chemistry 25(4):566–570. doi:10.1016/j.jechem.2016.02.012

    Article  Google Scholar 

  • Wang QL, Zhang YW, Zhou YM, Zhang ZW, Xue JJ, Xu YM, Zhang C, Sheng XL, Kui N (2016c) Nanocasting synthesis of an ordered mesoporous CeO2-supported Pt nanocatalyst with enhanced catalytic performance for the reduction of 4-nitrophenol. RSC Adv 6:730–739. doi:10.1039/C5RA23472G

    Article  Google Scholar 

  • Xie LJ, Sun GH, Su FY, Guo XQ, Kong QQ, Li XM, Huang XH, Wan L, Song W, Li K, Lv CX, Chen CM (2016) Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor application. J Mater Chem A 4:1637–1646. doi:10.1039/C5TA09043A

    Article  Google Scholar 

  • Yan WN, Yang ZR, Bian WY, Yang RZ (2015) FeCo2O4/hollow graphene spheres hybrid with enhanced electrocatalytic activities for oxygen reduction and oxygen evolution reaction. Carbon 92:74–83. doi:10.1016/j.carbon.2015.03.021

    Article  Google Scholar 

  • Yanaga A, Hozumi N, Ohira SI, Hasegawa A, Toda K (2016) Formaldehyde vapor produced from hexamethylenetetramine and pesticide: simultaneous monitoring of formaldehyde and ozone in chamber experiments by flow-based hybrid micro-gas analyzer. Talanta 148:649–654. doi:10.1016/j.talanta.2015.05.060

    Article  Google Scholar 

  • Zhang LH, Sun Q, Liu DH, Lu AH (2013) Magnetic hollow carbon nanospheres for removal of chromium ions. J Mater Chem A 1:9477–9483. doi:10.1039/C3TA10430C

    Article  Google Scholar 

  • Zhang Q, Li L, Wang YL, Chen YJ, He F, Gai SL, Yang PP (2015) Uniform fibrous-structured hollow mesoporous carbon spheres for high-performance supercapacitor electrodes. Electrochim Acta 176(10):542–547. doi:10.1016/j.electacta.2015.06.154

    Article  Google Scholar 

  • Zhang XY, Zhang HZ, Lin ZQ, Yu MH, Lu XH, Ton YX (2016) Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci China Mater 59:475. doi:10.1007/s40843-016-5061-1

    Article  Google Scholar 

  • Zhou TH, Du YH, Yin SM, Tian XZ, Yang HB, Wang X, Liu B, Zheng HM, Qiao SZ, Xu R (2016) Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy Environ Sci 9:2563–2570. doi:10.1039/C6EE01297C

    Article  Google Scholar 

  • Zhu S, Li JJ, He CN, Zhao NQ, Liu EZ, Shi CS, Zhang M (2015) Soluble salt self-assembly-assisted synthesis of three dimensional hierarchical porous carbon networks for supercapacitors. J Mater Chem A 3:22266–22273. doi:10.1039/C5TA04646G

    Article  Google Scholar 

  • Zou HB, Wang RW, Shi ZQ, Dai JY, Zhang ZT, Qiu SL (2016) One-dimensional periodic mesoporous organosilica helical nanotube with amphiphilic property for removal of contaminants in water. J Mater Chem A 4:4145–4154. doi:10.1039/C6TA00708B

    Article  Google Scholar 

  • Zuo Q, Zhao PP, Luo W, Cheng GZ (2016) Hierarchically porous Fe-N-C derived from covalent-organic material as highly efficient electrocatalyst for oxygen reduction. J Name 8:14271–14277. doi:10.1039/C6NR03273G

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (21676070), the Hebei Training Program for Talent Project (A201500117), Beijing National Laboratory for Molecular Sciences (20140120), Special Project for Synthesis and Application of Graphene in Hebei University of Science and Technology (2015PT65).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aibing Chen.

Ethics declarations

Funding

This study was funded by National Natural Science Foundation of China (21676070), the Hebei Training Program for Talent Project (A201500117), Beijing National Laboratory for Molecular Sciences (20140120), Special Project for Synthesis and Application of Graphene in Hebei University of Science and Technology (2015PT65).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Du, J., Liu, L. et al. Hierarchical porous nitrogen-doped partial graphitized carbon monoliths for supercapacitor. J Nanopart Res 19, 119 (2017). https://doi.org/10.1007/s11051-017-3796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3796-8

Keywords

Navigation