Skip to main content
Log in

Inflammatory responses of a human keratinocyte cell line to 10 nm citrate- and PEG-coated silver nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) are among the most commonly used engineered NPs and various commercially available products are designed to come in direct contact with the skin (wound dressings, textiles, creams, among others). Currently, there is limited understanding of the influence of coatings on the toxicity of AgNPs and in particular their ability to impact on AgNP’s mediated inflammatory responses. As AgNPs are often stabilized by different coatings, including citrate and polyethyleneglycol (PEG), in this study we investigate the influence of citrate (Cit10) or PEG (PEG10) coatings to 10 nm AgNP on skin, using human HaCaT keratinocytes. AgNPs cytotoxicity and inflammatory response (nuclear factor (NF)-κB induction and cytokine production) of HaCaT were assessed after in vitro exposure to 10 and 40 µg/mL after 4, 24, and 48 h. Results showed that although both types of coated AgNPs decreased cell proliferation and viability, Cit10 AgNPs were more toxic. NF-κB inhibition was observed for the highest concentration (40 µg/mL) of PEG10 AgNPs, and the putative link to early apoptotic pathways observed in these cells is discussed. No production of IL-1β, IL-6, IL-10, and TNFα was stimulated by AgNPs. Furthermore, Cit10 and PEG10 AgNPs decreased the release of MCP-1 by HaCaT cells after 48 h of exposure. As cytokines are vital for the immunologic regulation in the human body, and it is demonstrated that they may interfere with NPs, more research is needed to understand how different AgNPs affect the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelhalim MAK, Jarrar BM (2011) Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles. Lipids Health Dis 10(1):1

    Article  Google Scholar 

  • Ahlberg S, Meinke MC, Werner L, Epple M, Diendorf J, Blume-Peytavi U, Lademann J, Vogt A, Rancan F (2014) Comparison of silver nanoparticles stored under air or argon with respect to the induction of intracellular free radicals and toxic effects toward keratinocytes. Eur J Pharm Biopharm 88(3):651–657

    Article  Google Scholar 

  • Bastos V, de Oliveira JF, Brown D, Jonhston H, Malheiro E, Daniel-da-Silva AL, Duarte IF, Santos C, Oliveira H (2016) The influence of Citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line. Toxicol Lett 249:29–41

    Article  Google Scholar 

  • Behra R, Sigg L, Clift M, Herzog F, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauser B (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface 10(87):20130396

    Article  Google Scholar 

  • Benn T, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139

    Article  Google Scholar 

  • Bieber T (2008) Atopic dermatitis. N Engl J Med 358(14):1483–1494

    Article  Google Scholar 

  • Boonkaew B, Kempf M, Kimble R, Cuttle L (2014) Cytotoxicity testing of silver-containing burn treatments using primary and immortal skin cells. Burns 40(8):1562–1569

    Article  Google Scholar 

  • Boukamp P, Petrussevska R, Breitkreutz D, Hornung J, Markham A, Fusenig N (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  Google Scholar 

  • Brandenberger C, Mühlfeld C, Ali Z, Lenz A-GG, Schmid O, Parak WJ, Gehr P, Rothen-Rutishauser B (2010) Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 6(15):1669–1678

    Article  Google Scholar 

  • Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V (2004) Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 286(2):L344–L353

    Article  Google Scholar 

  • Brown DM, Dickson C, Duncan P, Al-Attili F, Stone V (2010) Interaction between nanoparticles and cytokine proteins: impact on protein and particle functionality. Nanotechnology 21(21):215104

    Article  Google Scholar 

  • Caballero-Díaz E, Pfeiffer C, Kastl L, Gil P, Simonet B, Valcárcel M, Lamana J, Laborda F, Parak WJ (2013) The toxicity of silver nanoparticles depends on their uptake by cells and thus on their surface chemistry. Part Part Syst Charact 30(12):1079–1085

    Article  Google Scholar 

  • Chalew TEA, Schwab KJ (2013) Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells. Cell Biol Toxicol 29(2):101–116

    Article  Google Scholar 

  • Comfort KK, Maurer EI, Hussain SM (2014) Slow release of ions from internalized silver nanoparticles modifies the epidermal growth factor signaling response. Colloids Surf B 123:136–142

    Article  Google Scholar 

  • Deng ZJ, Liang M, Toth I, Monteiro M, Minchin RF (2013) Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology 7(3):314–322

    Article  Google Scholar 

  • Driscoll KE, Carter JM, Hassenbein DG (1997) Cytokines and particle-induced inflammatory cell recruitment. Environ Health Perspect 105(Suppl 5):1159

    Article  Google Scholar 

  • Eckhardt S, Brunetto P, Gagnon J, Priebe M, Giese B, Fromm K (2013) Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 113(7):4708–4754

    Article  Google Scholar 

  • EPA (2010) State of the science literature review: everything nanosilver and more. Scientific, Technical, Research, Engineering and modeling support final report

  • Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4(3):281–286

    Article  Google Scholar 

  • George R, Merten S, Wang TT, Kennedy P, Maitz P (2014) In vivo analysis of dermal and systemic absorption of silver nanoparticles through healthy human skin. Australas J Dermatol 55(3):185–190

    Article  Google Scholar 

  • Ginn C, Khalili H, Lever R, Brocchini S (2014) PEGylation and its impact on the design of new protein-based medicines. Future Med Chem 6(16):1829–1846

    Article  Google Scholar 

  • Giovanni M, Yue J, Zhang L, Xie J, Ong CN (2015) Pro-Inflammatory Responses of RAW264. 7 Macrophages when Treated with Ultralow Concentrations of Silver, Titanium Dioxide, and Zinc Oxide Nanoparticles. J Hazard Mater 297:146–152

    Article  Google Scholar 

  • Graves JD, Craxton A, Clark EA (2004) Modulation and function of caspase pathways in B lymphocytes. Immunol Rev 197(1):129–146

    Article  Google Scholar 

  • Kelso A (1998) Cytokines: principles and prospects. Immunol Cell Biol 76(4):300–317

    Article  Google Scholar 

  • Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW (2012) Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 100(4):1033–1043

    Article  Google Scholar 

  • Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255(1):33–37

    Article  Google Scholar 

  • Lu W, Senapati D, Wang S, Tovmachenko O, Singh A, Yu H, Ray P (2010) Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 487(1):92–96

    Article  Google Scholar 

  • Miethling-Graff R, Rumpker R, Richter M, Verano-Braga T, Kjeldsen F, Brewer J, Hoyland J, Rubahn H-GG, Erdmann H (2014) Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol In Vitro 28(7):1280–1289

    Article  Google Scholar 

  • Morar N, Willis-Owen SAG, Moffatt MF (2006) The genetics of atopic dermatitis. J Allergy Clin Immunol 118(1):24–34

    Article  Google Scholar 

  • Mossman BT, Churg A (1998) Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157(5):1666–1680

    Article  Google Scholar 

  • Murray AR, Kisin E, Inman A, Young S-H, Muhammed M, Burks T, Uheida A, Tkach A, Waltz M, Castranova V (2013) Oxidative stress and dermal toxicity of iron oxide nanoparticles in vitro. Cell Biochem Biophys 67(2):461–476

    Article  Google Scholar 

  • Nowack B, Bucheli T (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  Google Scholar 

  • Nowack B, Krug H, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183

    Article  Google Scholar 

  • Orlowski P, Krzyzowska M, Zdanowski R, Winnicka A, Nowakowska J, Stankiewicz W, Tomaszewska E, Celichowski G, Grobelny J (2013) Assessment of in vitro cellular responses of monocytes and keratinocytes to tannic acid modified silver nanoparticles. Toxicol In Vitro 27(6):1798–1808

    Article  Google Scholar 

  • Pang C, Brunelli A, Zhu C, Hristozov D, Liu Y, Semenzin E, Wang W, Tao W, Liang J, Marcomini A, et al (2016) Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration. Nanotoxicology 10(2):129–139

    Google Scholar 

  • Park E-JJ, Choi K, Park K (2011a) Induction of inflammatory responses and gene expression by intratracheal instillation of silver nanoparticles in mice. Arch Pharm Res 34(2):299–307

    Article  Google Scholar 

  • Park J, Lim D-H, Lim H-J, Kwon T, J-S Choi, Jeong S, Choi I-H, Cheon J (2011b) Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem Commun (Camb) 47(15):4382–4384

    Article  Google Scholar 

  • Parnsamut C, Brimson S (2015) Effects of silver nanoparticles and gold nanoparticles on IL-2, IL-6, and TNF-α production via MAPK pathway in leukemic cell lines. Genet Mol Res 14(2):3650

    Article  Google Scholar 

  • Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18(1):217–242

    Article  Google Scholar 

  • Ryan SMM, Mantovani G, Wang X, Haddleton DM, Brayden DJ (2008) Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin Drug Deliv 5(4):371–383

    Article  Google Scholar 

  • Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118(3):407

    Article  Google Scholar 

  • Schoemaker MH, Ros JE, Homan M, Trautwein C (2002) Cytokine regulation of pro-and anti-apoptotic genes in rat hepatocytes: NF-κB-regulated inhibitor of apoptosis protein 2 (cIAP2) prevents apoptosis. J Hepatol 36(6):742–750

    Article  Google Scholar 

  • Sharma V, Yngard R, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1):83–96

    Article  Google Scholar 

  • Shi J, Sun X, Lin Y, Zou X, Li Z, Liao Y, Du M, Zhang H (2014) Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-κB pathways. Biomaterials 35(24):6657–6666

    Article  Google Scholar 

  • Song X-l, Li B, Xu K, Liu J, Ju W, Wang J, Liu X-d, Li J, Qi Y-f (2012) Cytotoxicity of water-soluble mPEG-SH-coated silver nanoparticles in HL-7702 cells. Cell Biol Toxicol 28:225–237

    Article  Google Scholar 

  • Suliman Y, Omar A, Ali D, Alarifi S, Harrath AH, Mansour L, Alwasel S (2013) Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells. Environ Toxicol 30(2):149–160

    Article  Google Scholar 

  • Takahashi M, Masuyama JI, Ikeda U, Kasahara T, Kitagawa SI, Takahashi YI, Shimada K, Kano S (1995) Induction of monocyte chemoattractant protein-1 synthesis in human monocytes during transendothelial migration in vitro. Circ Res 76(5):750–757

    Article  Google Scholar 

  • Tejamaya M, Römer I, Merrifield R, Lead J (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017

    Article  Google Scholar 

  • Thorley AJ, Tetley TD (2013) New perspectives in nanomedicine. Pharmacol Ther 140(2):176–185

    Article  Google Scholar 

  • Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006

    Article  Google Scholar 

  • Twentyman P, Luscombe M (1987) A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 56(3):279

    Article  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6(1):1769–1780

    Article  Google Scholar 

  • Wang X, Ji Z, Chang C, Zhang H, Wang M, Liao Y-P, Lin S, Meng H, Li R, Sun B et al (2014) Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10(2):385–398

    Article  Google Scholar 

  • Wong KK, Cheung SO, Huang L, Niu J, Tao C, Ho C-MM, Che C-MM, Tam PK (2009) Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem 4(7):1129–1135

    Article  Google Scholar 

  • Wullaert A, Bonnet MC, Pasparakis M (2011) NF-κB in the regulation of epithelial homeostasis and inflammation. Cell Res 21(1):146–158

    Article  Google Scholar 

  • Yang E-JJ, Jang J, Lim D-HH, Choi I-HH (2012) Enzyme-linked immunosorbent assay of IL-8 production in response to silver nanoparticles. Methods Mol Biol 926:131–139

    Article  Google Scholar 

  • Yarilin AA, Belyakov IM (2004) Cytokines in the thymus: production and biological effects. Curr Med Chem 11(4):447–464

    Article  Google Scholar 

  • Yen H-J, Hsu S-H, Tsai C-L (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5(13):1553–1561

    Article  Google Scholar 

  • Yoshizumi M, Nakamura T, Kato M, Ishioka T, Kozawa K, Wakamatsu K, Kimura H (2008) Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT. Cell Biol Int 32(11):1405–1411

    Article  Google Scholar 

  • Zhang LW, Yu WW, Colvin VL, Monteiro-Riviere NA (2008) Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 228(2):200–211

    Article  Google Scholar 

Download references

Acknowledgments

This work was developed in the scope of the projects CICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013) and CESAM (Ref. FCT UID/AMB/50017/2013), financed by national funds through the FCT/MEC and when applicable cofinanced by the European Regional Development Fund (FEDER) under the PT2020 Partnership Agreement. Funding to the project FCOMP-01-0124-FEDER-021456 (Ref. FCT PTDC/SAU-TOX/120953/2010) by FEDER through COMPETE and by national funds through FCT, and the FCT-awarded grants (SFRH/BD/81792/2011; SFRH/BPD/111736/2015) are acknowledged. I.F.D and A.L.D.S. acknowledge FCT/MCTES for the research contracts under the Program ‘Investigador FCT’ 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastos, V., Brown, D., Johnston, H. et al. Inflammatory responses of a human keratinocyte cell line to 10 nm citrate- and PEG-coated silver nanoparticles. J Nanopart Res 18, 205 (2016). https://doi.org/10.1007/s11051-016-3515-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3515-x

Keywords

Navigation