Skip to main content
Log in

Biophysical response of living cells to boron nitride nanoparticles: uptake mechanism and bio-mechanical characterization

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Boron nitride nanomaterials have attracted significant interest due to their superior chemical and physical properties. Despite these novel properties, investigation on the interaction between boron nitride nanoparticle (BN NP) and living systems has been limited. In this study, BN NP (100–250 nm) is assessed as a promising biomaterial for medical applications. The toxicity of BN NP is evaluated by assessing the cells behaviours both biologically (MTT assay, ROS detection etc.) and physically (atomic force microscopy). The uptake mechanism of BN NP is studied by analysing the alternations in cellular morphology based on cell imaging techniques. The results demonstrate in vitro cytocompatibility of BN NP with immense potential for use as an effective nanoparticle for various bio-medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Boulanger L, Andriot B, Cauchetier M, Willaime F (1995) Concentric shelled and plate-like graphitic boron nitride nanoparticles produced by CO2 laser pyrolysis. Chem Phys Lett 234:227–232. doi:10.1016/0009-2614(95)00008-R

    Article  Google Scholar 

  • Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, Bertozzi CR (2009) Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 131:890–891

    Article  Google Scholar 

  • Ciofani G, Raffa V, Menciassi A, Cuschieri A (2008) Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol Bioeng 101:850–858

    Article  Google Scholar 

  • Ciofani G et al (2014) Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. Nanomedicine 9:773–788

    Article  Google Scholar 

  • Coles N, Glasson D, Jayaweera S (1969) Formation and reactivity of nitrides. III. Boron, aluminium and silicon nitrides. J Appl Chem 19:178–181

    Article  Google Scholar 

  • Colognato R, Park M, Wick P, De Jong WH (2012) Interactions with the human body. In: Adverse effects of engineered nanomaterials: exposure, toxicology and impact on human health. Elsevier Inc, Oxford

  • Colombo P (2010) Polymer derived ceramics: from nano-structure to applications. DEStech Publications Inc, Lancaster

    Book  Google Scholar 

  • Darling E, Zauscher S, Guilak F (2006) Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr Cartil 14:571–579

    Article  Google Scholar 

  • De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241

    Article  Google Scholar 

  • Del Turco S et al (2013) Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells. Colloids Surf B 111:142–149

    Article  Google Scholar 

  • Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810

    Article  Google Scholar 

  • Dutta D, Donaldson JG (2012) Search for inhibitors of endocytosis. Cell Logist 2:203–208. doi:10.4161/cl.23967

    Article  Google Scholar 

  • Erisken C, Kalyon DM, Wang H (2008) Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29:4065–4073. doi:10.1016/j.biomaterials.2008.06.022

    Article  Google Scholar 

  • Faria EC, Ma N, Gazi E, Gardner P, Brown M, Clarke NW, Snook RD (2008) Measurement of elastic properties of prostate cancer cells using AFM. Analyst 133:1498–1500

    Article  Google Scholar 

  • Gao J, Xu B (2009) Applications of nanomaterials inside cells. Nano Today 4:37–51. doi:10.1016/j.nantod.2008.10.009

    Article  Google Scholar 

  • Gupta AK, Gupta M, Yarwood SJ, Curtis AS (2004) Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J Controlled Release 95:197–207

    Article  Google Scholar 

  • Herre J et al (2004) Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104:4038–4045. doi:10.1182/blood-2004-03-1140

    Article  Google Scholar 

  • Horvath L et al (2011) In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS nano 5:3800–3810

    Article  Google Scholar 

  • Hussain SM et al (2009) Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21:1549–1559

    Article  Google Scholar 

  • Iversen T-G, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6:176–185

    Article  Google Scholar 

  • Jin S, Ye K (2007) Nanoparticle-mediated drug delivery and gene therapy. Biotechnol Prog 23:32–41. doi:10.1021/bp060348j

    Article  Google Scholar 

  • Joni IM, Balgis R, Ogi T, Iwaki T, Okuyama K (2011) Surface functionalization for dispersing and stabilizing hexagonal boron nitride nanoparticle by bead milling. Colloids Surf A 388:49–58. doi:10.1016/j.colsurfa.2011.08.007

    Article  Google Scholar 

  • Ladjal H, Hanus JL, Pillarisetti A, Keefer C, Ferreira A, Desai JP Atomic force microscopy-based single-cell indentation: experimentation and finite element simulation. In: Intelligent robots and systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 10–15 Oct. 2009, pp 1326–1332. doi:10.1109/IROS.2009.5354351

  • Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–5857

    Article  Google Scholar 

  • Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C (2013) Nanoparticle Adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135:1438–1444. doi:10.1021/ja309812z

    Article  Google Scholar 

  • Lian G, Zhang X, Zhu L, Tan M, Cui D, Wang Q (2010) A facile solid state reaction route towards nearly monodisperse hexagonal boron nitride nanoparticles. J Mater Chem 20:3736–3742. doi:10.1039/B920881J

    Article  Google Scholar 

  • Liang C, Joseph MM, James CML, Hao L (2011) The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22:105708

    Article  Google Scholar 

  • Lin DC, Dimitriadis EK, Horkay F (2007) Robust strategies for automated AFM force curve analysis—I. Non-adhesive indentation of soft, inhomogeneous materials. J Biomech Eng 129:430–440

    Article  Google Scholar 

  • Lin L, Li Z, Zheng Y, Wei K (2009) Synthesis and application in the CO oxidation conversion reaction of hexagonal boron nitride with high surface area. J Am Ceram Soc 92:1347–1349

    Article  Google Scholar 

  • Maye MM, Han L, Kariuki NN, Ly NK, Chan W-B, Luo J, Zhong C-J (2003) Gold and alloy nanoparticles in solution and thin film assembly: spectrophotometric determination of molar absorptivity. Anal Chim Acta 496:17–27

    Article  Google Scholar 

  • Mosleh M, Atnafu ND, Belk JH, Nobles OM (2009) Modification of sheet metal forming fluids with dispersed nanoparticles for improved lubrication. Wear 267:1220–1225. doi:10.1016/j.wear.2008.12.074

    Article  Google Scholar 

  • Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2:1639–1644. doi:10.1021/nn800330a

    Article  Google Scholar 

  • Nguyen TD, Gu Y (2014a) Determination of strain-rate-dependent mechanical behavior of living and fixed osteocytes and chondrocytes using atomic force microscopy and inverse finite element analysis. J Biomech Eng 136:101004

    Article  Google Scholar 

  • Nguyen TD, Gu Y (2014b) Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes. Appl Phys Lett 104:183701. doi:10.1063/1.4876056

    Article  Google Scholar 

  • Paine RT, Narula CK (1990) Synthetic routes to boron nitride. Chem Rev 90:73–91

    Article  Google Scholar 

  • Pauksch L, Hartmann S, Rohnke M, Szalay G, Alt V, Schnettler R, Lips KS (2014) Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater 10:439–449. doi:10.1016/j.actbio.2013.09.037

    Article  Google Scholar 

  • Podobeda L, Tsapuk A, Buravov A (1976) Oxidation of boron nitride under nonisothermal conditions. Sov Powder Metall Met Ceram 15:696–698

    Article  Google Scholar 

  • Raidongia K, Gomathi A, Rao CNR (2010) Synthesis and characterization of nanoparticles, nanotubes, nanopans, and graphene-like structures of boron nitride. Isr J Chem 50:399–404. doi:10.1002/ijch.201000047

    Article  Google Scholar 

  • Ricotti L et al (2013) Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels. PloS One 8:e71707

    Article  Google Scholar 

  • Ricotti L et al (2014) Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts. J Nanopart Res 16:1–14

    Article  Google Scholar 

  • Salles V, Bernard S, Li J, Brioude A, Chehaidi S, Foucaud S, Miele P (2009) Design of highly dense boron nitride by the combination of spray-pyrolysis of borazine and additive-free sintering of derived ultrafine powders. Chem Mater 21:2920–2929

    Article  Google Scholar 

  • Salles V, Bernard S, Chiriac R, Miele P (2012) Structural and thermal properties of boron nitride nanoparticles. J Eur Ceram Soc 32:1867–1871

    Article  Google Scholar 

  • Shi X, Wang S, Yang H, Duan X, Dong X (2008) Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining–nitriding technology. J Solid State Chem 181:2274–2278. doi:10.1016/j.jssc.2008.05.029

    Article  Google Scholar 

  • Shi Z, Huang X, Cai Y, Tang R, Yang D (2009) Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5:338–345. doi:10.1016/j.actbio.2008.07.023

    Article  Google Scholar 

  • Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427. doi:10.1016/j.ejps.2012.12.006

    Article  Google Scholar 

  • Stevenson BR, Begg DA (1994) Concentration-dependent effects of cytochalasin D on tight junctions and actin filaments in MDCK epithelial cells. J Cell Sci 107:367–375

    Google Scholar 

  • Tang C, Bando Y, Huang Y, Zhi C, Golberg D (2008) Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles. Adv Funct Mater 18:3653–3661

    Article  Google Scholar 

  • Trickey WR, Lee GM, Guilak F (2000) Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J Orthop Res 18:891–898

    Article  Google Scholar 

  • Unciti-Broceta JD, Cano-Cortés V, Altea-Manzano P, Pernagallo S, Díaz-Mochón JJ, Sánchez-Martín RM (2015) Number of nanoparticles per cell through a spectrophotometric method—a key parameter to assess nanoparticle-based cellular assays. Sci Rep 5:10091

    Article  Google Scholar 

  • Wood GL, Janik JF, Visi MZ, Schubert DM, Paine RT (2005) New borate precursors for boron nitride powder synthesis. Chem Mater 17:1855–1859. doi:10.1021/cm048255p

    Article  Google Scholar 

  • Wu JCS, Lin Z-A, Pan J-W, Rei M-H (2001) A novel boron nitride supported Pt catalyst for VOC incineration. Appl Catal A 219:117–124. doi:10.1016/S0926-860X(01)00673-1

    Article  Google Scholar 

  • Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322. doi:10.1016/j.biomaterials.2008.07.038

    Article  Google Scholar 

  • Zhou E, Lim C, Quek S (2005) Finite element simulation of the micropipette aspiration of a living cell undergoing large viscoelastic deformation. Mech Adv Mater Struct 12:501–512

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by ARC Future Fellowship project (No. FT100100172), ARC Discovery Project: DP150100828 and QUT Postgraduate Research Award (QUTPRA). This work was performed in part at the central analytical and research facility (CARF) and Institute of Health and Biomedical Innovation (IHBI, QUT). The authors gratefully acknowledge Mr. Arixin Bo for his assistance in XRD of BN NP. The authors also acknowledge Miss Saba Farnaghi for her help with ROS production study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanTong Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasel, M.A.I., Li, T., Nguyen, T.D. et al. Biophysical response of living cells to boron nitride nanoparticles: uptake mechanism and bio-mechanical characterization. J Nanopart Res 17, 441 (2015). https://doi.org/10.1007/s11051-015-3248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3248-2

Keywords

Navigation