Skip to main content

Advertisement

Log in

Effects of functional group modification on the thermal properties of nano-carbon clusters

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, the thermal properties including thermal stability, thermal decomposition activation energy and the thermal enthalpy of nano-carbon clusters (NCCs, including fullerene[60](C60, with a diameter of 0.71 nm), multi-walled carbon nanotubes(MWCNTs, with a diameter of 10–30 nm and a length of 1–2 µm), single-walled carbon nanotubes (SWCNTs, with a diameter of ~2 nm and a length of 5–15 µm), ligands of NCC-based terpyridine (NCC-tpy), and NCC-based ruthenium complexes (NCC-tpyRuCl3) were systematically studied by method of simultaneous thermogravimetric and differential thermal analysis. The results show that the modification of NCCs with terpyridine leads to a decrease in the thermal stability and in the thermal decomposition activation energy (the thermal decomposition activation energy decreased from 174.4 for C60, 144.9 for MWCNTs and 161.2 kJ/mol for SWCNTs to 166.2 for C60-tpy, 119.7 for MWCNT-tpy and 85.0 kJ/mol for SWCNT-tpy). But the modification of NCCs with terpyridine results in an increase in the enthalpy change of NCC thermal decomposition reaction. The introduction of the metal ions through complexation further decreases the thermal stability and the thermal decomposition activation energy of NCC-tpyRuCl3 due to the catalytic oxidation of Ru(III) ions (the activation energy decreases to 124.1 for C60-tpyRuCl3, 106.4 for MWCNT-tpyRuCl3 and 41.2 kJ/mol for SWCNT-tpyRuCl3). The introduction of the metal ions also leads to a decrease in the enthalpy change of the thermal decomposition reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali-Boucetta H, Nunes A, Sainz R, Herrero MA, Tian BW, Prato M, Bianco A, Kostarelos K (2013) Asbestos-like pathogenicity of long carbon nanotubes alleviated by chemical functionalization. Angew Chem Int Edit 52:2274–2278. doi:10.1002/anie.201207664

    Article  Google Scholar 

  • Atamny F, Blocker J, Dubotzky A, Kurt H, Timpe O, Loose G, Mahdi W, Schlogl R (1992) Surface chemistry of carbon: activation of molecular oxygen. Mol Phys 76:851–886. doi:10.1080/00268979200101731

    Article  Google Scholar 

  • Bai Y, Park IS, Lee SJ, Bae TS, Watari F, Uo M, Lee MH (2011) Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent. Carbon 49:3663–3671. doi:10.1016/j.carbon.2011.05.002

    Article  Google Scholar 

  • Bayazit MK, Coleman KS (2009) Fluorescent single-walled carbon nanotubes following the 1,3-dipolar cycloaddition of pyridinium ylides. J Am Chem Soc 131:10670–10676. doi:10.1021/ja903712f

    Article  Google Scholar 

  • Blanch AJ, Lenehan CE, Quinton JS (2012) Dispersant effects in the selective reaction of aryl diazonium salts with single-walled carbon nanotubes in aqueous solution. J Phys Chem C 116:1709–1723. doi:10.1021/jp208191c

    Article  Google Scholar 

  • Campisciano V, La Parola V, Liotta LF, Giacalone F, Gruttadauria M (2015) Fullerene-ionic-liquid conjugates: a new class of hybrid materials with unprecedented properties. Chem Eur J 21:3327–3334. doi:10.1002/chem.201406067

    Article  Google Scholar 

  • Chang Y, Y-y H, Liu T, Y-h G, Zha F (2014) Aluminum pillared palygorskite-supported nanoscale zero-valent iron for removal of Cu(II), Ni(II) from aqueous solution. Arab J Sci Eng 39:6727–6736. doi:10.1007/s13369-014-1229-x

    Article  Google Scholar 

  • Hersam MC (2008) Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol 3:387–394. doi:10.1038/nnano.2008.135

    Article  Google Scholar 

  • Hsieh YC, Chou YC, Lin CP, Hsieh TF, Shu CM (2010) Thermal analysis of multi-walled carbon nanotubes by Kissinger’s corrected kinetic equation. Aerosol Air Qual Res 10:212–218. doi:10.4209/aaqr.2009.08.0053

    Google Scholar 

  • Hsieh Y-C, Zhang Y, Su D, Volkov V, Si R, Wu L, Zhu Y, An W, Liu P, He P, Ye S, Adzic RR, Wang JX (2013) Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nat Commun 4:1–9. doi:10.1038/ncomms3466

    Google Scholar 

  • Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O (1999) Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J Am Chem Soc 121:9611–9614. doi:10.1021/ja9916658

    Article  Google Scholar 

  • Kang P, Zhang S, Meyer TJ, Brookhart M (2014) Rapid selective electrocatalytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes. Angew Chem Int Edit 53:8709–8713. doi:10.1002/anie.201310722

    Article  Google Scholar 

  • Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3–33. doi:10.1016/j.carbon.2011.08.011

    Article  Google Scholar 

  • Lavskaya YV, Bulusheva LG, Okotrub AV, Yudanov NF, Vyalikh DV, Fonseca A (2009) Comparative study of fluorinated single- and few-wall carbon nanotubes by X-ray photoelectron and X-ray absorption spectroscopy. Carbon 47:1629–1636. doi:10.1016/j.carbon.2009.01.046

    Article  Google Scholar 

  • Lee SH, Lee DH, Lee WJ, Kim SO (2011) Tailored assembly of carbon nanotubes and graphene. Adv Funct Mater 21:1338–1354. doi:10.1002/adfm.201002048

    Article  Google Scholar 

  • Leino AR, Mohl M, Kukkola J, Maki-Arvela P, Kokkonen T, Shchukarev A, Kordas K (2013) Low-temperature catalytic oxidation of multi-walled carbon nanotubes. Carbon 57:99–107. doi:10.1016/j.carbon.2013.01.040

    Article  Google Scholar 

  • Li Z, Lin W, Moon K-S, Wilkins SJ, Yao Y, Watkins K, Morato L, Wong C (2011) Metal catalyst residues in carbon nanotubes decrease the thermal stability of carbon nanotube/silicone composites. Carbon 49:4138–4148. doi:10.1016/j.carbon.2011.05.042

    Article  Google Scholar 

  • Liu Q, Tian JQ, Cui W, Jiang P, Cheng NY, Asiri AM, Sun XP (2014) Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew Chem Int Edit 53:6710–6714. doi:10.1002/anie.201404161

    Article  Google Scholar 

  • Oueiny C, Berlioz S, Perrin FX (2014) Carbon nanotube-polyaniline composites. Prog Polym Sci 39:707–748. doi:10.1016/j.progpolymsci.2013.08.009

    Article  Google Scholar 

  • Pan Y, Tong B, Shi J, Zhao W, Shen J, Zhi J, Dong Y (2010) Fabrication, characterization, and optoelectronic properties of layer-by-layer films based on terpyridine-modified MWCNTs and Ruthenium(III) ions. J Phys Chem C 114:8040–8047. doi:10.1021/jp909904t

    Article  Google Scholar 

  • Paraecattil AA, Banerji N (2014) Charge separation pathways in a highly efficient polymer: fullerene solar cell material. J Am Chem Soc 136:1472–1482. doi:10.1021/ja410340g

    Article  Google Scholar 

  • Park S, Kim SJ, Nam JH, Pitner G, Lee TH, Ayzner AL, Wang HL, Fong SW, Vosgueritchian M, Park YJ, Brongersma ML, Bao ZA (2015) Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C-60 phototransistor. Adv Mater 27:759–765. doi:10.1002/adma.201404544

    Article  Google Scholar 

  • Petrie K, Docoslis A, Vasic S, Kontopoulou M, Morgan S, Ye ZB (2011) Non-covalent/non-specific functionalization of multi-walled carbon nanotubes with a hyperbranched polyethylene and characterization of their dispersion in a polyolefin matrix. Carbon 49:3378–3382. doi:10.1016/j.carbon.2011.04.001

    Article  Google Scholar 

  • Piloyan GO, Ryabchik I, Novikova OS (1966) Determination of activation energies of chemical reactions by differential thermal analysis. Nature 212:1229. doi:10.1038/2121229a0

    Article  Google Scholar 

  • Reuillard B, Le Goff A, Cosnier S (2014) Polypyrrolic bipyridine bis(phenantrolinequinone) Ru(II) complex/carbon nanotube composites for nad-dependent enzyme immobilization and wiring. Anal Chem 86:4409–4415. doi:10.1021/ac500272v

    Article  Google Scholar 

  • Schroeder BC, Li Z, Brady MA, Faria GC, Ashraf RS, Takacs CJ, Cowart JS, Duong DT, Chiu KH, Tan CH, Cabral JT, Salleo A, Chabinyc ML, Durrant JR, McCulloch I (2014) Enhancing fullerene-based solar cell lifetimes by addition of a fullerene dumbbell. Angew Chem Int Edit 53:12870–12875. doi:10.1002/anie.201407310

    Article  Google Scholar 

  • Serrano MC, Gutierrez MC, del Monte F (2014) Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Prog Polym Sci 39:1448–1471. doi:10.1016/j.progpolymsci.2014.02.004

    Article  Google Scholar 

  • Su DS, Perathoner S, Centi G (2013) Nanocarbons for the development of advanced catalysts. Chem Rev 113:5782–5816. doi:10.1021/cr300367d

    Article  Google Scholar 

  • Tallury SS, Pasquinelli MA (2010) Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes. J Phys Chem B 114:4122–4129. doi:10.1021/jp908001d

    Article  Google Scholar 

  • Tan YJ, Zhu YF, Li LQ (2015) Excellent catalytic effects of multi-walled carbon nanotube supported titania on hydrogen storage of a Mg-Ni alloy. Chem Commun 51:2368–2371. doi:10.1039/c4cc09350j

    Article  Google Scholar 

  • Tran PD, Le Goff A, Heidkamp J, Jousselme B, Guillet N, Palacin S, Dau H, Fontecave M, Artero V (2011) noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: carbon monoxide tolerant catalysts for hydrogen evolution and uptake. Angew Chem Int Ed 50:1371–1374. doi:10.1002/anie.201005427

    Article  Google Scholar 

  • Wang FJ, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2015) Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat Commun 6:6305. doi:10.1038/ncomms7305

    Article  Google Scholar 

  • Wu Z-Y, Wang W (2015) Terpyridine chelate complex-functionalized single-walled carbon nanotubes: synthesis and redox properties. Fuller Nanotubes Carbon Nanostruct 23:131–141. doi:10.1080/1536383x.2014.926331

    Article  Google Scholar 

  • Wu Z, Huang R, Xie S, Zheng L (2011) Ruthenium-bipyridine complexes bearing fullerene or carbon nanotubes: synthesis and impact of different carbon-based ligands on the resulting products. Dalton Trans 40:8353–8360. doi:10.1039/c1dt10417a

    Article  Google Scholar 

  • Xiao JP, Pan XL, Guo SJ, Ren PJ, Bao XH (2015) Toward fundamentals of confined catalysis in carbon nanotubes. J Am Chem Soc 137:477–482. doi:10.1021/ja511498s

    Article  Google Scholar 

  • Yan YM, Zhang MN, Gong KP, Su L, Guo ZX, Mao LQ (2005) Adsorption of methylene blue dye onto carbon nanotubes: a route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chem Mat 17:3457–3463. doi:10.1021/cm0504182

    Article  Google Scholar 

  • Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638. doi:10.1039/b901421g

    Article  Google Scholar 

  • You Y-Z, Hong C-Y, Pan C-Y (2007) Covalently immobilizing a biological molecule onto a carbon nanotube via a stimuli-sensitive bond. J Phys Chem C 111:16161–16166. doi:10.1021/jp073324j

    Article  Google Scholar 

  • Yuan MJ, Voznyy O, Zhitomirsky D, Kanjanaboos P, Sargent EH (2015) Synergistic doping of fullerene electron transport layer and colloidal quantum dot solids enhances solar cell performance. Adv Mater 27:917–921. doi:10.1002/adma.201404411

    Article  Google Scholar 

  • Zhang RH, Liang J, Wang Q (2012) Preparation and characterization of graphite-dispersed styrene-acrylic emulsion composite coating on magnesium alloy. Appl Surf Sci 258:4360–4364. doi:10.1016/j.apsusc.2011.12.113

    Article  Google Scholar 

  • Zhu H, Fu Y, Jiang R, Yao J, Liu L, Chen Y, Xiao L, Zeng G (2013) Preparation, characterization and adsorption properties of chitosan modified magnetic graphitized multi-walled carbon nanotubes for highly effective removal of a carcinogenic dye from aqueous solution. Appl Surf Sci 285:865–873. doi:10.1016/j.apsusc.2013.09.003

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Natural Science Foundation of the Fujian Province of China (Grant Nos. 2013J01057; 2009J01039) and the National Natural Science Foundation of China (Nos. 21390390, 21390391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyi Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Cai, X. & Yang, Z. Effects of functional group modification on the thermal properties of nano-carbon clusters. J Nanopart Res 17, 329 (2015). https://doi.org/10.1007/s11051-015-3134-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3134-y

Keywords

Navigation