Skip to main content

Advertisement

Log in

Characterization and photoactivity of Pt/N-doped TiO2 synthesized through a sol–gel process at room temperature

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The rates of photocatalytic production of H2 by Pt/N-doped TiO2 are significantly affected by the hydrolysis temperature applied during the sol–gel process. Production rates increase as the hydrolysis temperature decreases from 40 to 20 °C. The effects of the hydrolysis temperature on the properties and water-splitting behavior of photocatalysts were investigated. Characterization results showed that hydrolysis temperatures higher than 40 °C induce the formation of the rutile phase and particle agglomeration, reduce the N-dopant content, and decrease the range of visible-light absorption. In this study, a low hydrolysis temperature of about 20 °C is optimal for the sol–gel preparation of N-doped TiO2; this temperature favors the formation of high-purity anatase, small particle size, extensive visible-light absorption, and excellent rates of photocatalytic production of H2 (about 2100 μmol h−1 g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aita Y, Komatsu M, Yin S, Sato T (2004) Phase-compositional control and visible light photocatalytic activity of nitrogen-doped titania via solvothermal process. J Solid State Chem 177(9):3235–3238

    Article  Google Scholar 

  • Ananpattarachai J, Kajitvichyanukul P, Seraphin S (2009) Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J Hazard Mater 168(1):253–261

    Article  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271

    Article  Google Scholar 

  • Ashokkumar M (1998) An overview on semiconductor particulate systems for photoproduction of hydrogen. Int J Hydrog Energy 23(6):427–438

    Article  Google Scholar 

  • Balat M (2008) Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrog Energy 33(15):4013–4029

    Article  Google Scholar 

  • Balat H, Kirtay E (2010) Hydrogen from biomass: present scenario and future prospects. Int J Hydrog Energy 35(14):7416–7426

    Article  Google Scholar 

  • Bischoff BL, Anderson MA (1995) Peptization process in the sol–gel preparation of porous anatase (TiO2). Chem Mater 7(10):1772–1778

    Article  Google Scholar 

  • Chen X, Lou YB, Samia ACS, Burda C, Gole JL (2005) Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: comparison to a commercial nanopowder. Adv Funct Mater 15(1):41–49

    Article  Google Scholar 

  • Chen C, Bai H, S-m Chang, Chang C, Den W (2007) Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources. J Nanopart Res 9(3):365–375

    Article  Google Scholar 

  • Della Foglia F, Losco T, Piseri P, Milani P, Selli E (2009) Photocatalytic activity of nanostructured TiO2 films produced by supersonic cluster beam deposition. J Nanopart Res 11(6):1339–1348

    Article  Google Scholar 

  • Gandhe AR, Fernandes JB (2005) A simple method to synthesize N-doped rutile titania with enhanced photocatalytic activity in sunlight. J Solid State Chem 178(9):2953–2957

    Article  Google Scholar 

  • Gribb AA, Banfield JF (1997) Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am Mineral 82(7):717–728

    Google Scholar 

  • Huang B-S, Wey M-Y (2011) Properties and H2 production ability of Pt photodeposited on the anatase phase transition of nitrogen-doped titanium dioxide. Int J Hydrog Energy 36(16):9479–9486

    Article  Google Scholar 

  • Huang B-S, Chang F-Y, Wey M-Y (2010) Photocatalytic properties of redox-treated Pt/TiO2 photocatalysts for H2 production from an aqueous methanol solution. Int J Hydrog Energy 35(15):7699–7705

    Article  Google Scholar 

  • Huang B-S, Su E-C, Wey M-Y (2013) Design of a Pt/TiO2−xNx/SrTiO3 triplejunction for effective photocatalytic H2 production under solar light irradiation. Chem Eng J 223:854–859

    Article  Google Scholar 

  • Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107(19):4545–4549

    Article  Google Scholar 

  • Kudo A, Kato H, Tsuji I (2004) Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem Lett 33(12):1534–1539

    Article  Google Scholar 

  • Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 48(10):1103–1111

    Article  Google Scholar 

  • Liu J, Li H, Zong L, Li Q, Wang X, Zhang M, Yang J (2015) Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles. J Nanopart Res 17(2):1–8

    Google Scholar 

  • Ni M, Leung MK, Leung DY, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425

    Article  Google Scholar 

  • Pedemonte MM, Visintin A, Capparelli AL (2010) Study of a photostable thin films of TiO2 on titanium. Int J Hydrog Energy 35(11):6069–6073

    Article  Google Scholar 

  • Shen S, Guo P, Zhao L, Du Y, Guo L (2011) Insights into photoluminescence property and photocatalytic activity of cubic and rhombohedral ZnIn2S4. J Solid State Chem 184(8):2250–2256

    Article  Google Scholar 

  • Spadavecchia F, Ardizzone S, Cappelletti G, Oliva C, Cappelli S (2012) Time effects on the stability of the induced defects in TiO2 nanoparticles doped by different nitrogen sources. J Nanopart Res 14(12):1–12

    Article  Google Scholar 

  • Sreethawong T, Laehsalee S, Chavadej S (2009) Use of Pt/N-doped mesoporous-assembled nanocrystalline TiO2 for photocatalytic H2 production under visible light irradiation. Catal Commun 10(5):538–543

    Article  Google Scholar 

  • Sun H, Bai Y, Liu H, Jin W, Xu N, Chen G, Xu B (2008) Mechanism of nitrogen-concentration dependence on pH value: experimental and theoretical studies on nitrogen-doped TiO2. J Phys Chem C 112(34):13304–13309

    Article  Google Scholar 

  • Tang Z, Zhang J, Cheng Z, Zhang Z (2003) Synthesis of nanosized rutile TiO2 powder at low temperature. Mater Chem Phys 77(2):314–317

    Article  Google Scholar 

  • Wang C-C, Ying JY (1999) Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem Mater 11(11):3113–3120

    Article  Google Scholar 

  • Wanqin Z, Changlin Y, Qizhe F, Longfu W, Jianchai C, Jimmy CY (2013) Ultrasonic fabrication of N-doped TiO2 nanocrystals with mesoporous structure and enhanced visible light photocatalytic activity. Chin J Chem Catal 34(6):1250–1255

    Article  Google Scholar 

  • Wu D, Long M, Cai W, Chen C, Wu Y (2010) Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible-light activity. J Alloys Compd 502(2):289–294

    Article  Google Scholar 

  • Xu QC, Zhang Y, He Z, Loo SCJ, Tan TTY (2012) An efficient visible and UV-light-activated B-N-codoped TiO2 photocatalytic film for solar depollution prepared via a green method. J Nanopart Res 14(8):1–12

    Article  Google Scholar 

  • Yang X, Salzmann C, Shi H, Wang H, Green ML, Xiao T (2008) The role of photoinduced defects in TiO2 and its effects on hydrogen evolution from aqueous methanol solution. J Phys Chem A 112(43):10784–10789

    Article  Google Scholar 

  • Yasumori A, Shinoda H, Kameshima Y, Hayashi S, Okada K (2001) Photocatalytic and photoelectrochemical properties of TiO2-based multiple layer thin film prepared by sol–gel and reactive-sputtering methods. J Mater Chem 11(4):1253–1257

    Article  Google Scholar 

  • Yu C, Jimmy CY (2009) A simple way to prepare C–N-codoped TiO2 photocatalyst with visible-light activity. Catal Lett 129(3–4):462–470

    Article  Google Scholar 

  • Zhao Y, Qiu X, Burda C (2008) The Effects of sintering on the photocatalytic activity of N-doped TiO2 nanoparticles. Chem Mater 20(8):2629–2636

    Article  Google Scholar 

  • Zhou X, Lu J, Jiang J, Li X, Lu M, Yuan G, Wang Z, Zheng M, Seo HJ (2014) Simple fabrication of N-doped mesoporous TiO2 nanorods with the enhanced visible light photocatalytic activity. Nanoscale Res Lett 9(1):1–7

    Article  Google Scholar 

  • Zou Z, Ye J, Arakawa H (2003) Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. Int J Hydrog Energy 28(6):663–669

    Article  Google Scholar 

  • Zou J-J, He H, Cui L, Du H-Y (2007) Highly efficient Pt/TiO2 photocatalyst for hydrogen generation prepared by a cold plasma method. Int J Hydrog Energy 32(12):1762–1770

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council (NSC), Taiwan, ROC for providing financial support under Grant No. NSC 101-2221-E-005-043-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Yen Wey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, BS., Tseng, HH., Su, EC. et al. Characterization and photoactivity of Pt/N-doped TiO2 synthesized through a sol–gel process at room temperature. J Nanopart Res 17, 282 (2015). https://doi.org/10.1007/s11051-015-3091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3091-5

Keywords

Navigation