Skip to main content
Log in

Size-dependent magnetic properties in Nd–(Fe, Mn)–B nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The size dependence of the magnetic properties and in particular the Curie temperature, the spin reorientation temperature, and the magnetocrystalline anisotropy have been investigated in Nd2Fe11Mn3B nanoflakes (thickness below 200 nm) and nanoparticles (5–13 nm) synthesized by high-energy ball milling. Magnetization and susceptibility measurements showed for the first time in rare-earth intermetallic compounds a much higher Curie temperature in nanoparticles as compared to bulk, which can be explained by finite-size scaling. The particles and flakes also showed lower coercivities and spin reorientation temperatures which can be attributed to their lower magnetocrystalline anisotropy. In the 4.8 nm particles, the magnetocrystalline anisotropy is estimated to be nearly half of the bulk value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akdogan O, Li W, Hadjipanayis GC, Skomski R, Sellmyer DJ (2012) One-step fabrication of L10 FePt nanocubes and rods by cluster beam deposition. J Appl Phys 111:07B535

    Google Scholar 

  • Akdogan O, Li W, Balamurgan B, Hadjipanayis GC, Sellmyer DJ (2013) Effect of exchange interactions on the coercivity of SmCo5 nanoparticles made by cluster beam deposition. Adv Funct Mater 23:3262

    Article  Google Scholar 

  • Allan GAT (1970) Critical temperatures of ising lattice films. Phys Rev B 1:352

    Article  Google Scholar 

  • Andres RP, Overback RS, Brown WL, Brus LE, Goddard WA, Kaldor A, Louie SG, Moscovitis M, Peercy PS, Riley SJ, Seigle RW, Spaepen F, Wang Y (1989) Research opportunities on clusters and cluster-assembled materials—A Department of Energy, Council on Materials Science Panel Report. J Mater Res 4:704

    Article  Google Scholar 

  • Barber MN (1983) In: Domb C, Lebowitz JL (eds) Phase transitions and critical phenomena, vol 8. Academic Press, New York, p 145

    Google Scholar 

  • Bolzoni F, Leccabue F, Moze O, Paret L, Solzi M (1987) Magnetocrystalline anisotropy of Ni and Mn substituted Nd2Fe14B compounds. J Magn Magn Mater 67:373–377

    Article  Google Scholar 

  • Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, Reading

    Google Scholar 

  • Farle M, Baberschke K, Stetter U, Aspelmeier A, Gerhardter F (1993) Thickness-dependent Curie temperature of Gd(0001)/W(110) and its dependence on the growth conditions. Phys Rev B 47:11571

    Article  Google Scholar 

  • Ferdinand AF, Fisher ME (1969) Bounded and inhomogeneous ising models. I. Specific-heat anomaly of a finite lattice. Phys Rev 185:832

    Article  Google Scholar 

  • Gabay AM, Gunduz Akdogan N, Marinescu Jasinski M, Liu J, Hadjipanayis GC (2010) Rare earth–cobalt hard magnetic nanoparticles and nanoflakes by high-energy milling. Phys Condens Matter 22:164213

    Article  Google Scholar 

  • Gavrin A, Childress JR, Chien CL, Martinez B, Salamon MB (1990) Evidence of dimensional crossover of the spin-glass transition in thin CuMn multilayers. Phys Rev Lett 64:2438

    Article  Google Scholar 

  • Gunduz Akdogan N, Hadjipanayis GC, Sellmyer DJ (2009) Anisotropic PrCo nanoparticles by surfactant-assisted ball milling. IEEE Trans Magn 45:10

    Google Scholar 

  • Gunduz Akdogan N, Hadjipanayis GC, Sellmyer DJ (2010) Novel Nd2Fe14B nanoflakes and nanoparticles for the development of high energy nanocomposite magnets. Nanotechnology 21:295705

    Article  Google Scholar 

  • Gunduz Akdogan N, Li W, Hadjipanayis GC (2011) Anisotropic Nd2Fe14B nanoparticles and nanoflakes by surfactant-assisted ball milling. J Appl Phys 109:07A759

    Google Scholar 

  • Kaul SN (1985) Static critical phenomena in ferromagnets with quenched disorder. J Magn Magn Mater 53:5–53

    Article  Google Scholar 

  • Kou XC, Dahlgren M, Grossinger R, Wiesinger G (1997) Spin-reorientation transition in nano-micro- and single-crystalline Nd2Fe14B. J Appl Phys 81:4428

    Article  Google Scholar 

  • Kraus W, Nolze GJ (1996) POWDER CELL—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29:301

    Article  Google Scholar 

  • Laosiritaworn Y, Yimnirun R, Poulter J (2006) The effect of uniaxial stress to spin reorientation transition in magnetic thin-films: Monte Carlo investigation. Curr Appl Phys 6:469

    Article  Google Scholar 

  • Rong C, Li D, Nandwana V, Poudyal N, Ding Y, Wang Z, Zeng H, Liu JP (2006) Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Adv Mater 18:2984–2988

    Article  Google Scholar 

  • Rong C, Poudyal N, Liu JP (2010) Size-dependent spin-reorientation transition in Nd2Fe14B nanoparticles. Phys Lett A 374:3967–3970

    Article  Google Scholar 

  • Sabiryanov RF, Jaswal SS (1970) Ab Initio calculations of the Curie temperature of complex permanent-magnet materials. Phys Rev Lett 79:155

    Article  Google Scholar 

  • Schneider CM, Bressler P, Schuster P, Kirschner (1990) Curie temperature of ultrathin films of fcc-cobalt epitaxially grown on atomically flat Cu(100) surfaces. Phys Rev Lett 64:1059

    Article  Google Scholar 

  • Seehra MS, Singh V, Dutta P, Neeleshwar S, Chen YY, Chen CL, Chou SW, Chen CC (2010) Size-dependent magnetic parameters of fcc FePt nanoparticles: applications to magnetic hyperthermia. J Phys D 43:145002

    Article  Google Scholar 

  • Tang ZX, Sorensen CM, Klabunde KJ, Hadjipanayis GC (1991) Size-dependent Curie temperature in nanoscale MnFe2O4 particles. Phys Rev Lett 67(25):3602–3605

    Article  Google Scholar 

  • Williamson GK, Hall WH (1953) X-ray line broadening from filed Al and W. Acta Metall 1:22

    Article  Google Scholar 

  • Xie GZ, Tian ZJ, Yu Z, Gu BX, Lu M, Du YW (2002) The magnetic properties of melt-spun Nd9Fe85−x Mn x B6(x = 0–1) ribbons. J Magn Magn Mater 251:109–114

    Article  Google Scholar 

  • Xie G, Yin S, Zhang F, Lin P, Gu B, Lu M, Du Y, Yuan Z (2004) Effects of Mn doping on structural and magnetic properties in NdFeB nanocomposites. Mater Lett 58:636–640

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. A. M. Gabay for stimulating discussions and critical review of the manuscript. This work was supported by NSF DMR-1005871 and Marie Curie Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilay Gunduz Akdogan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunduz Akdogan, N., Li, W. & Hadjipanayis, G.C. Size-dependent magnetic properties in Nd–(Fe, Mn)–B nanoparticles. J Nanopart Res 16, 2797 (2014). https://doi.org/10.1007/s11051-014-2797-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2797-0

Keywords

Navigation