Skip to main content
Log in

Cyclen dithiocarbamate-functionalized silver nanoparticles as a probe for colorimetric sensing of thiram and paraquat pesticides via host–guest chemistry

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We have developed a simple and rapid colorimetric method for on-site analysis of thiram and paraquat using cyclen dithiocarbamate-functionalized silver nanoparticles (CN-DTC-Ag NPs) as a colorimetric probe. The synthesized CN-DTC-Ag NPs were characterized by UV–Visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy, dynamic light scattering, and transmission electron microscopic techniques. The CN-DTC molecules provide good supramolecular self assembly on the surfaces of Ag NPs to encapsulate thiram and paraquat selectively via “host–guest” chemistry, resulting in red-shift in surface plasmon resonance peak of CN-DTC-Ag NPs from 396 to 530 nm and 510 nm and color change from yellow to pink for thiram and to orange for paraquat, which can be naked-eye detected. The present method shows good linearity in the range of 10.0–20.0 µM and of 50.0–250 µM with limits of detection 2.81 × 10−6 M and 7.21 × 10−6 M for thiram and paraquat, respectively. This method was proved as a promising tool for on-site and real-time monitoring of thiram and paraquat in environmental water, potato, and wheat samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aulakh JS, Malik AK, Mahajan RK (2005) Solid phase microextraction-high pressure liquid chromatographic determination of nabam, thiram and azamethiphos in water samples with UV detection: preliminary data. Talanta 66:266–270

    Article  Google Scholar 

  • Banerjee S, Kara S, Santra S (2008) A simple strategy for quantum dot assisted selective detection of cadmium ions. Chem Commun 44:3037–3039

    Article  Google Scholar 

  • Bismut C, Hall AH (1995) Paraquat poisoning, prevention, treatment. Dekker, New York

    Google Scholar 

  • Cajka T, Riddellova K, Zomer P, Mol H, Jana H (2011) Direct analysis of dithiocarbamate fungicides in fruit by ambient mass spectrometry. Food Addit Contam A 28:1372–1382

    Article  Google Scholar 

  • Cram DJ (1988) The design of molecular hosts, guests, and their complexes. Science 240:760–767

    Article  Google Scholar 

  • Develay S, Tripier R, Le BM, Patinec V, Serratrice G, Handel H (2006) Host-guest interaction between cyclen based macrotricyclic ligands and phosphate anions, a potentiometric investigation. Dalton Trans 28:3418–3426

    Article  Google Scholar 

  • Fernandez C, Reviejo AJ, Polo LM, Pingarron JM (1996) HPLC-electrochemical detection with graphite-poly (tetrafluoroethylene) electrode determination of the fungicides thiram and disulfiram. Talanta 43:1341–1348

    Article  Google Scholar 

  • Fernández-Lodeiro J, Nunez C, Oliveira E, Capelo J, Lodeiro C (2013) 1D chain fluorescein-functionalized gold and silver nanoparticles as new optical mercury chemosensor in aqueous media. J Nanopart Res 15:1828–1838

    Article  Google Scholar 

  • Fernández-Lodeiro J, Núñez C, Fernández-Lodeiro A, Oliveira E, Rodríguez-González B, Dos Santos AA, Capelo JL, Lodeiro C (2014) New-coated fluorescent silver nanoparticles with a fluorescein thiol esther derivative: fluorescent enhancement upon interaction with heavy metal ions. J Nanopart Res 16:2315–2327

    Article  Google Scholar 

  • Ferreira MF, Martins AF, Martins JA, Ferreira PM, Tóth E, Geraldes CFGC (2009) Gd(DO3A-N-a-aminopropionate): a versatile and easily available synthon with optimized water exchange for the synthesis of high relaxivity, targeted MRI contrast agents. Chem Commun 45:6475–6477

    Article  Google Scholar 

  • Filipe OMS, Vidal MM, Duarte AC, Santos EBH (2007) A solid-phase extraction procedure for the clean-up of thiram from aqueous solutions containing high concentrations of humic substances. Talanta 72:1235–1238

    Article  Google Scholar 

  • Garcia LLC, Figueiredo-Filho LCS, Oliveira GG, Fatibello-Filho O, Banks CE (2013) Square-wave voltammetric determination of paraquat using a glassy carbon electrode modified with multiwalled carbon nanotubes within a dihexadecyl hydrogenphosphate (DHP) film. Sens Actuators B Chem 181:306–311

    Article  Google Scholar 

  • Garcia-Febrero R, Valera E, Muriano A, Pividori M-I, Sanchez-Baeza F, Marco M-P (2013) An electrochemical magneto immunosensor (EMIS) for the determination of paraquat residues in potato samples. Anal Bioanal Chem 405:7841–7849

    Article  Google Scholar 

  • Han C, Zeng L, Li H, Xie G (2009) Colorimetric detection of pollutant aromatic amines isomers with p-sulfonatocalix[6]arene-modified gold nanoparticles. Sens Actuators B Chem 137:704–709

    Article  Google Scholar 

  • Hara S, Sasaki N, Takase D, Shiotsuka S, Ogata K, Futagami K, Tamura K (2007) Rapid and sensitive HPLC method for the simultaneous determination of paraquat and diquat in human serum. Anal Sci 23:523–526

    Article  Google Scholar 

  • Hernãndez-Olmos MA, Agüí L, Yáñez-Sedeño P, Pingarrón JM (2000) Analytical voltammetry in low-permitivity organic solvents using disk and cylindrical microelectrodes, determination of thiram in ethyl acetate. Electrochim Acta 46:289–296

    Article  Google Scholar 

  • International agency for research on cancer (1991) IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans: thiram. 53:403–422, Lyon, France

  • Jain A, Verma KK, Townshend A (1993) Determination of paraquat by flow injection spectrophotometry. Anal Chim Acta 284:275–279

    Article  Google Scholar 

  • Kailasa SK, Wu HF (2012) One-pot synthesis of dopamine dithiocarbamate functionalized gold nanoparticles for quantitative analysis of small molecules and phosphopeptides in SALDI- and MALDI-MS. Analyst 137:1629–1638

    Article  Google Scholar 

  • Kishikawa N, Higuchi S, Ohyama K, Nakashima K, Kuroda N (2013) A simple and rapid chemiluminescence assay for on-site analysis of paraquat using a portable luminometer. Forensic Toxicol 31:301–306

    Article  Google Scholar 

  • Laliwala SK, Mehta VN, Rohit JV, Kailasa SK (2014) Citrate-modified silver nanoparticles as a colorimetric probe for simultaneous detection of four triptan-family drugs. Sens Actuators B Chem 197:254–263

    Article  Google Scholar 

  • Li C, Wong W-T (2002) A convenient method for the preparation of mono N-alkylated cyclams and cyclens in high yields. Tetrahedron Lett 43:3217–3220

    Article  Google Scholar 

  • Li H, Guo J, Ping H, Liu L, Zhang M, Guan F, Sun C, Zhang Q (2011) Visual detection of organophosphorus pesticides represented by mathamidophos using Au nanoparticles as colorimetric probe. Talanta 87:93–99

    Article  Google Scholar 

  • Li H, Chen D-X, Sun Y-L, Zheng YB, Tan L-L, Weiss PS, Yang Y-W (2013) Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified gold nanoparticles. J Am Chem Soc 135:1570–1576

    Article  Google Scholar 

  • Mai N, Liu X, Wei W, Luo S, Liu W (2011) Electrochemical determination of paraquat using a DNA-modified carbon ionic liquid electrode. Microchim Acta 174:89–95

    Article  Google Scholar 

  • Malik AK, Faubel W (2000) Capillary electrophoretic determination of tetramethylthiuram disulphide (thiram). Anal Lett 33:2055–2064

    Article  Google Scholar 

  • Marco V (1995) Host–guest chemistry in the mass spectrometer. J Mass Spectrom 30:925–939

    Article  Google Scholar 

  • Matolesy G, Ndasy M, Andriska V (1988) Pesticide chemistry. Elsevier, Amsterdam

    Google Scholar 

  • Menon SK, Modi NR, Pandya A, Lodha AA (2013) Ultrasensitive and specific detection of dimethoate using p-sulphonato calix[4]resorcinarene functionalized silver nanoprobe in aqueous solution. RSC Adv 3:10623–10627

    Article  Google Scholar 

  • Modi RP, Mehta VN, Kailasa SK (2014) Bifunctionalization of silver nanoparticles with 6-mercaptonicotinic acid and melamine for simultaneous colorimetric sensing of Cr3+ and Ba2+ ions. Sens Actuators B Chem 195:562–571

    Article  Google Scholar 

  • Moreira PN, de Pinho PG, Baltazar MT, Bastos ML, Carvalho F, Dinis-Oliveira RJ (2012) Quantification of paraquat in postmortem samples by gas chromatography-ion trap mass spectrometry and review of the literature. Biomed Chromatogr 26:338–349

    Google Scholar 

  • Nováková K, Navrátil T, Dytrtová JJ, Chýlková J (2013) The use of copper solid amalgam electrodes for determination of the pesticide thiram. J Solid State Electrochem 17:1517–1528

    Article  Google Scholar 

  • Peruga A, Grimalt S, López FJ, Sancho JV, Hernández F (2012) Optimisation and validation of a specific analytical method for the determination of thiram residues in fruits and vegetables by LC–MS/MS. Food Chem 135:186–192

    Article  Google Scholar 

  • Philbey AW, Morton AG (2001) Paraquat poisoning in sheep from contaminated water. Aust Vet J 79:842–843

    Article  Google Scholar 

  • Rastegarzadeh S, Abdali Sh (2013) Colorimetric determination of thiram based on formation of gold nanoparticles using ascorbic acid. Talanta 104:22–26

    Article  Google Scholar 

  • Ringli D, Schwack W (2013) Selective determination of thiram residues in fruit and vegetables by hydrophilic interaction LC-MS. Food Addit Contam A 30:1909–1917

    Article  Google Scholar 

  • Rohit JV, Kailasa SK (2014) 5-Sulfo anthranilic acid dithiocarbamate functionalized silver nanoparticles as a colorimetric probe for the simple and selective detection of tricyclazole fungicide in rice samples. Anal Methods 6:5934–5941

    Article  Google Scholar 

  • Rohit JV, Solanki JN, Kailasa SK (2014) Surface modification of silver nanoparticles with dopamine dithiocarbamate for selective colorimetric sensing of mancozeb in environmental samples. Sens Actuators B Chem 200:219–226

    Article  Google Scholar 

  • Saito T, Miura N, Namera A, Oikawa H, Miyazaki S, Nakamoto A, Inokuchi S (2012) Mixed-mode C-C18 monolithic spin-column extraction and GC-MS for simultaneous assay of organophosphorus compounds, glyphosate, and glufosinate in human serum and urine. Forensic Toxicol 30:1–10

    Article  Google Scholar 

  • Sen T, Patra A (2009) Formation of self-assembled au nanoparticles and the study of their optical properties by steady-state and time-resolved spectroscopies. J Phys Chem C 113:13125–13132

    Article  Google Scholar 

  • Sharma VK, Aulakh JS, Malik AK (2003) Thiram: degradation, applications and analytical methods. J Environ Monit 5:717–723

    Article  Google Scholar 

  • Stenersen J (2004) Chemical pesticides: mode of action and toxicology. CRC Press, Boca Raton

    Google Scholar 

  • Sun J, Guo L, Bao Y, Xie J (2011) A simple, label-free AuNPs-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide. Biosens Bioelectron 28:152–157

    Article  Google Scholar 

  • Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay: a review. Anal Chim Acta 751:24–43

    Article  Google Scholar 

  • Vinner E, Stievenart M, Humbert L, Mathieu D, Lhermitte M (2001) Separation and quantification of paraquat and diquat in serum and urine by capillary electrophoresis. Biomed Chromatogr 15:342–347

    Article  Google Scholar 

  • Waseem A, Yaqoob M, Nabi A (2010) Determination of thiram in natural waters using flow-injection with cerium(IV)–quinine chemiluminescence system. Luminescence 25:71–75

    Google Scholar 

  • Xiong D, Li H (2008) Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology 19:465502–465507

    Article  Google Scholar 

  • Xu Q, Du S, Jin G, Li H, Hu XY (2011) Determination of acetamiprid by a colorimetric method based on the aggregation of gold nanoparticles. Microchim Acta 173:323–329

    Article  Google Scholar 

  • Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I theory. Anal Biochem 262:137–156

    Article  Google Scholar 

  • Yoshioka N, Asano M, Kuse A, Matsuoka T, Akiyama Y, Mitsuhashi T, Nagasaki Y, Ueno Y (2012) Rapid and sensitive quantification of paraquat and diquat in human serum by liquid chromatography/time-of-flight mass spectrometry using atmospheric pressure photoionization. Forensic Toxicol 30:135–141

    Article  Google Scholar 

  • Zheng J, Zhang H, Qu J, Zhu Q, Chen X (2013) Visual detection of glyphosate in environmental water samples using cysteamine-stabilized gold nanoparticles as colorimetric probe. Anal Methods 5:917–924

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Department of Science and Technology, Government of India under Fast-Track Young Scientist Scheme (No.SR/FT/CS-54/2010). We thank Gharda Chemicals Ltd, Super Crop Safe Ltd, Atul Ltd, and United Phosphorus Ltd for providing pesticides samples for research purpose. We especially thank Prof. Z.V.P. Murthy and Mr. Chetan Patel, Chemical Engineering Department, SVNIT for providing DLS measurements. We thank to Mr. Vikas Patel, SICART, V.V.Nagar for assistance in TEM data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar Kailasa.

Additional information

Guest Editors: Carlos Lodeiro Espiño, José Luis Capelo Martinez

This article is part of the topical collection on Composite Nanoparticles

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohit, J.V., Kailasa, S.K. Cyclen dithiocarbamate-functionalized silver nanoparticles as a probe for colorimetric sensing of thiram and paraquat pesticides via host–guest chemistry. J Nanopart Res 16, 2585 (2014). https://doi.org/10.1007/s11051-014-2585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2585-x

Keywords

Navigation