Skip to main content
Log in

Ferroelectric nanofibers with an embedded optically nonlinear benzothiazole derivative

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report measurements of the molecular first hyperpolarizability, thermal stability, photophysical, piezoelectric, and ferroelectric properties of a benzothiazole derivative bearing an arylthiophene π-conjugated bridge both in solution and when embedded into a poly (l-lactic acid) matrix in the form of electrospun fibers with an average diameter of roughly 500 nm. The embedded nanocrystalline phenylthienyl-benzothiazole with crystal sizes of about 1.4 nm resulted in a good piezoelectric response from these functionalized electrospun fibers, indicative of a polar crystalline structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert IDL, Marks TJ, Ratner MA (1997) Large molecular hyperpolarizabilities. Quantitative analysis of aromaticity and auxiliary donor-acceptor effects. J Am Chem Soc 119:6575–6582. doi:10.1021/ja962968u

    Article  Google Scholar 

  • Balke N, Bdikin I, Kalinin S, Kholkin A (2009) Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J Am Ceram Soc 92:1629–1647. doi:10.1111/j.1551-2916.2009.03240.x

    Article  Google Scholar 

  • Batista RMF, Costa SPG, Raposo MMM (2004) Synthesis of new fluorescent 2-(2′,2′′-bithienyl)-1,3-benzothiazoles. Tetrahedron Lett 45:2825–2828. doi:10.1016/j.tetlet.2004.02.048

    Article  Google Scholar 

  • Batista RMF, Costa SPG, Malheiro EL et al (2007) Synthesis and characterization of new thienylpyrrolyl-benzothiazoles as efficient and thermally stable nonlinear optical chromophores. Tetrahedron 63:4258–4265

    Article  Google Scholar 

  • Breitung EM, Shu C-F, McMahon RJ (2000) Thiazole and thiophene analogues of donor-acceptor stilbenes: molecular hyperpolarizabilities and structure-property relationships. J Am Chem Soc 122:1154–1160. doi:10.1021/ja9930364

    Article  Google Scholar 

  • Coe BJ, Harris JA, Hall JJ et al (2006) Synthesis and quadratic nonlinear optical properties of salts containing benzothiazolium electron-acceptor groups. Chem Mater 18:5907–5918. doi:10.1021/cm061594t

    Article  Google Scholar 

  • Coelho P, Castro MCR, Fonseca AMC et al (2012a) Enhancement of the photochromic switching speed of bithiophene azo dyes. Tetrahedron Lett 53:4502–4506. doi:10.1016/j.tetlet.2012.05.166

    Article  Google Scholar 

  • Coelho P, Castro MCR, Fonseca AMC, Raposo MMM (2012b) Photoswitching in azo dyes bearing thienylpyrrole and benzothiazole heterocyclic systems. Dye Pigment 92:745–748. doi:10.1016/j.dyepig.2011.06.019

    Article  Google Scholar 

  • Coelho P, Sousa CM, Castro MCR et al (2013) Fast thermal cis-trans isomerization of heterocyclic azo dyes in PMMA polymers. Opt Mater 35:1167–1172. doi:10.1016/j.optmat.2013.01.007

    Article  Google Scholar 

  • Costa SPG, Ferreira JA, Kirsch G, Oliveira-Campos AMF (1997) New fluorescent 1,3-benzothiazoles by the reaction of heterocyclic aldehydes with ortho-aminobenzenethiol. J Chem Res (S) 314–315; (M) 2001–2013. doi:10.1039/A702605F

  • Costa SPG, Batista RMF, Cardoso P et al (2006) 2-Arylthienyl-substituted 1,3-benzothiazoles as new nonlinear optical chromophores. Eur J Org Chem. doi:10.1002/ejoc.200600059

    Google Scholar 

  • Cui Y, Qian G, Chen L, Wang Z, Gao J, Wang M (2006) Enhanced thermal stability of dipole alignment in inorganic-organic hybrid films containing benzothiazole chromophore. J Phys Chem B 110:4105–4110. doi:10.1021/jp057146a

    Article  Google Scholar 

  • Fu H-Y, Gao X-d, Zhong G-y et al (2009a) Synthesis and electroluminescence properties of benzothiazole derivatives. J Lumin 129:1207–1214. doi:10.1016/j.jlumin.2009.06.004

    Article  Google Scholar 

  • Fu H-Y, Sun X-Y, Gao X-d et al (2009b) Synthesis and characterization of benzothiazole derivatives for blue electroluminescent devices. Synth Met 159:254–259. doi:10.1016/j.synthmet.2008.09.013

    Article  Google Scholar 

  • Garcia-Amorós J, Castro MCR, Coelho P, Raposo MMM, Velasco D (2013) New heterocyclic systems to afford microsecond green-light isomerisable azo dyes and their use as fast molecular photochromic switches. Chem Commun 49:11427–11429. doi:10.1039/C3CC46736H

    Article  Google Scholar 

  • Garcia-Amorós J, Reig M, Castro MCR, Cuadrado A, Raposo MMM, Velasco D (2014) Molecular photo-oscillators based on highly accelerated heterocyclic azo dyes in nematic liquid crystals. Chem Commun 50(51):6704–6706. doi:10.1039/C4CC01450B

    Article  Google Scholar 

  • Hrobarik P, Zahradnik P, Fabian WMF (2004) Computational design of benzothiazole-derived push-pull dyes with high molecular quadratic hyperpolarizabilities. Phys Chem Chem Phys 6:495–502. doi:10.1039/B314150K

    Article  Google Scholar 

  • Hrobárik P, Hrobarikova V, Sigmundova I et al (2011) Benzothiazoles with tunable electron-withdrawing strength and reverse polarity: a route to triphenylamine-based chromophores with enhanced two-photon absorption. J Org Chem 76:8726–8736. doi:10.1021/jo201411t

    Article  Google Scholar 

  • Hrobárik P, Sigmundova I, Zahradník P et al (2010) Molecular engineering of benzothiazolium salts with large quadratic hyperpolarizabilities: can auxiliary electron-withdrawing groups enhance nonlinear optical responses? J Phys Chem C 114:22289–22302. doi:10.1021/jp108623d

    Article  Google Scholar 

  • Hrobáriková V, Hrobárik P, Gajdoš P et al (2010) Benzothiazole-based fluorophores of donor-π-acceptor-π-donor type displaying high two-photon absorption. J Org Chem 75:3053–3068. doi:10.1021/jo100359q

    Article  Google Scholar 

  • Isakov D, de Matos Gomes E, Belsley MS et al (2010a) High nonlinear optical anisotropy of urea nanofibers. Europhys Lett 91:28007. doi:10.1209/0295-5075/91/28007

    Article  Google Scholar 

  • Isakov DV, de Matos Gomes E, Almeida BG et al (2010b) Piezoresponse force microscopy studies of the triglycine sulfate-based nanofibers. J Appl Phys 108:042011–042014. doi:10.1063/1.3474966

    Article  Google Scholar 

  • Isakov DV, de Matos Gomes E, Vieira LG et al (2011a) Oriented single-crystal-like molecular arrangement of optically nonlinear 2-methyl-4-nitroaniline in electrospun nanofibers. ACS Nano 5:73–78. doi:10.1021/Nn101413x

    Article  Google Scholar 

  • Isakov D, de Matos Gomes E, Bdikin I et al (2011b) Production of polar β-glycine nanofibers with enhanced nonlinear optical and piezoelectric properties. Cryst Growth Design 11:4288–4291. doi:10.1021/cg2009336

    Article  Google Scholar 

  • Isakov D, de Matos Gomes E, Belsley MS et al (2012) Strong enhancement of second harmonic generation in 2-methyl-4-nitroaniline nanofibers. Nanoscale 4:4978–4982. doi:10.1039/C2NR30771E

    Article  Google Scholar 

  • Isakov DV, de Matos Gomes E, Almeida BG et al (2014) Energy harvesting from nanofibers of hybrid organic ferroelectric dabcoHReO4. Appl Phys Lett 104:032907. doi:10.1063/1.4862437

    Article  Google Scholar 

  • Jin XF, Cui YJ, Gao Jk et al (2009) High thermally stable hybrid nonlinear optical films containing heterocycle chromophores. Thin Solid Films 517:5079–5083. doi:10.1016/j.tsf.2009.03.092

    Article  Google Scholar 

  • Kaatz P, Shelton DP (1996) Polarized hyper-Rayleigh light scattering measurements of nonlinear optical chromophores. J Chem Phys 105:3918–3929. doi:10.1063/1.472264

    Article  Google Scholar 

  • Kariduraganavar MY, Tambe SM, Tasaganva RG et al (2011) Studies on nonlinear optical polyurethanes containing heterocyclic chromophores. J Mol Struct 987:158–165. doi:10.1016/j.molstruc.2010.12.010

    Article  Google Scholar 

  • Kuwabara J, Namekawa T, Haga M, Kanbara T (2012) Luminescent Ir(III) complexes containing benzothiazole-based tridentate ligands: synthesis, characterization, and application to organic light-emitting diodes. Dalton Trans 41:44–46. doi:10.1039/C1dt11560j

    Article  Google Scholar 

  • Li D, Wang Y, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:1167–1171. doi:10.1021/nl0344256

    Article  Google Scholar 

  • Li SPY, Tang TSM, Yiu KSM, Lo KKW (2012) Cyclometalated iridium(III)-polyamine complexes with intense and long-lived multicolor phosphorescence: synthesis, crystal structure, photophysical behavior, cellular uptake, and transfection properties. Chem Eur J 18:13342–13354. doi:10.1002/chem.201200979

    Article  Google Scholar 

  • Liu Y, Guo H, Zhao J (2011) Ratiometric luminescent molecular oxygen sensors based on uni-luminophores of CN Pt(II)(acac) complexes that show intense visible-light absorption and balanced fluorescence/phosphorescence dual emission. Chem Commun 47:11471–11473. doi:10.1039/C1CC14582G

    Article  Google Scholar 

  • Mabrouk A, Azazi A, Alimi K (2010) On the properties of new benzothiazole derivatives for organic light emitting diodes (OLEDs): a comprehensive theoretical study. J Phys Chem Solids 71:1225–1235. doi:10.1016/j.jpcs.2010.04.020

    Article  Google Scholar 

  • Miller RD, Lee VY, Moylan CR (1994) Substituted azole derivatives as nonlinear-optical chromophores. Chem Mater 6:1023–1032. doi:10.1021/Cm00043a026

    Article  Google Scholar 

  • Mishra A, Ma CQ, Bauerle P (2009) Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chem Rev 109:1141–1276. doi:10.1021/cr8004229

    Article  Google Scholar 

  • Morris JV, Mahaney MA, Huber JR (1976) Fluorescence quantum yield determinations. 9,10-Diphenylanthracene as a reference-standard in different solvents. J Phys Chem 80:969–974. doi:10.1021/j100550a010

    Article  Google Scholar 

  • Nye JF (2000) Physical properties of crystals: their representation by tensors and matrices. Clarendon Press, Oxford

    Google Scholar 

  • Oudar JL (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446–457. doi:10.1063/1.434888

    Article  Google Scholar 

  • Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668. doi:10.1063/1.434213

    Article  Google Scholar 

  • Persano L, Dagdeviren C, Su Y et al (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun 4:1633. doi:10.1038/ncomms2639

    Article  Google Scholar 

  • Pina J, Seixas de Melo S, Batista RMF et al (2007) Spectral and photophysical characterization of donor-pi-acceptor arylthienyl- and bithienyl-benzothiazole derivatives in solution and solid state. Phys Chem A 111:8574–8578. doi:10.1021/Jp0730646

    Article  Google Scholar 

  • Pina J, Seixas de Melo S, Batista RMF et al (2010) The influence of the relative position of the thiophene and pyrrole rings in donor-acceptor thienylpyrrolyl-benzothiazole derivatives. A photophysical and theoretical investigation. Phys Chem Chem Phys 12:9719–9725. doi:10.1039/C002434a

    Article  Google Scholar 

  • Raposo MMM, Castro MCR, Schellenberg P et al (2011a) Design, synthesis, and characterization of the electrochemical, nonlinear optical properties, and theoretical studies of novel thienylpyrrole azo dyes bearing benzothiazole acceptor groups. Tetrahedron 67:5189–5198. doi:10.1016/j.tet.2011.05.053

    Article  Google Scholar 

  • Raposo MMM, Castro MCR, Belsley M, Fonseca AMC (2011b) Push pull bithiophene azo-chromophores bearing thiazole and benzothiazole acceptor moieties: synthesis and evaluation of their redox and nonlinear optical properties. Dye Pigment 91:454–465. doi:10.1016/j.dyepig.2011.05.007

    Article  Google Scholar 

  • Raposo MMM, Fonseca AMC, Castro MCR et al (2011c) Synthesis and characterization of novel diazenes bearing pyrrole, thiophene and thiazole heterocycles as efficient photochromic and nonlinear optical (NLO) materials. Dye Pigment 91:62–73. doi:10.1016/j.dyepig.2011.02.012

    Article  Google Scholar 

  • Razus AC, Birzan L, Surugiu NM et al (2007) Syntheses of azulen-1-yl-benzothiazol-2-yl diazenes. Dye Pigment 74:26–33. doi:10.1016/j.dyepig.2006.01.041

    Article  Google Scholar 

  • Reis H (2006) Problems in the comparison of theoretical and experimental hyperpolarizabilities revisited. J Chem Phys 125:014506–014509. doi:10.1063/1.2211611

    Article  Google Scholar 

  • Tao Y, Yang C, Qin J (2011) Organic host materials for phosphorescent organic light-emitting diodes. Chem Soc Rev 40:2943–2970. doi:10.1039/C0CS00160K

    Article  Google Scholar 

  • Varanasi PR, Jen AK-Y, Chandrasekhar J et al (1996) The important role of heteroaromatics in the design of efficient second-order nonlinear optical molecules: theoretical investigation on push-pull heteroaromatic stilbenes. J Am Chem Soc 118:12443–12448. doi:10.1021/ja960136q

    Article  Google Scholar 

  • Wang RJ, Liu D, Ren HC et al (2011) Homoleptic tris-cyclometalated iridium complexes with 2-phenylbenzothiazole ligands for highly efficient orange OLEDs. Mater Chem 21:15494–15500. doi:10.1039/C1JM10757G

    Article  Google Scholar 

  • Xu XJ, Liao Y, Yu G et al (2007) Charge carrier transporting, photoluminescent, and electroluminescent properties of zinc(II)-2-(2-hydroxyphenyl)benzothiazolate complex. Chem Mater 19:1740–1748. doi:10.1021/cm062960b

    Article  Google Scholar 

  • Zhang XH, Wong OY, Gao ZQ et al (2001) A new blue-emitting benzothiazole derivative for organic electroluminescent devices. Mater Sci Eng B 85:182–185. doi:10.1016/S0921-5107(01)00607-9

    Article  Google Scholar 

  • Zyss J, Oudar JL (1982) Structural dependence of nonlinear-optical properties of methyl-(2,4-dinitrophenyl)-aminopropanoate crystals. Phys Rev A 26:2016–2027. doi:10.1103/PhysRevA.26.2016

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Fundação para a Ciência e Tecnologia (FCT, Portugal) and FEDER-COMPETE for financial support through the Centro de Química and Centro de Física - Universidade do Minho, Projects PTDC/CTM/105597/2008 (FCOMP-01-0124-FEDER-009457), PEst-C/QUI/UI0686/2013 (FCOMP-01-0124-FEDER-037302), and a post-doctoral Grant to R.M.F. Batista (SFRH/BPD/79333/2011). The NMR spectrometer Bruker Avance III 400 is part of the National NMR Network and was purchased within the framework of the National Program for Scientific Re-equipment, contract REDE/1517/RMN/2005 with funds from POCI 2010 (FEDER) and FCT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Manuela M. Raposo or Etelvina de Matos Gomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baptista, R.M.F., Isakov, D., Raposo, M.M.M. et al. Ferroelectric nanofibers with an embedded optically nonlinear benzothiazole derivative. J Nanopart Res 16, 2502 (2014). https://doi.org/10.1007/s11051-014-2502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2502-3

Keywords

Navigation