Skip to main content
Log in

Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, zinc oxide (ZnO) nanowires-based electrochemical biosensor is designed and fabricated for the detection of L-lactic acid. ZnO nanowires were successfully synthesized via the chemical vapor deposition method. The morphology and structure of the prepared products were characterized, and the average diameter of synthesized ZnO samples was 500 nm. The fluorescence characterization was performed to verify the immobilization of lactate oxidase onto the ZnO surface. Biosensors based on large-area ZnO nanowires were then constructed, and a series of electrochemical experiments showed that ZnO could provide the efficient electron transfer channel between the enzymic active sites and the electrode surface. The proposed electrochemical biosensor exhibited a sensitivity of 15.6 µA cm−2 mM−1, a wide linear range of 12 µM–1.2 mM with a low-detection limit of 12 µM for L-lactic acid detection. This study has indicated the potential applications for ZnO nanowires to construct the simple and economic nano-bio devices for the detection of biological species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chaubey A, Pande KK, Singh VS, Malhotra BD (2000) Co-immobilization of lactate oxidase and lactate dehydrogenase on conducting polyaniline films. Anal Chim Acta 407:97–103. doi:10.1016/S0003-2670(99)00797-7

    Article  Google Scholar 

  • Choi A, Kim K, Jung H-I, Lee SY (2010) ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode. Sens Actuator B-Chem 148(2):577–582. doi:10.1016/j.snb.2010.04.049

    Article  Google Scholar 

  • de Villers MM, Bergh JJ (2000) Comparing HPLC and UV spectrophotometric analysis methods for determining the stability of sorbic acid in nonionic creams containing lactic acid. Drug Dev Ind Pharm 26(5):539–547. doi:10.1081/ddc-100101265

    Article  Google Scholar 

  • Fang B, Zhang CH, Wang GF, Wang MF, Ji YL (2011) A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres. Sens Actuator B-Chem 155(1):304–310. doi:10.1016/j.snb.2010.12.040

    Article  Google Scholar 

  • Fatemi H, Khodadadi AA, Firooz AA, Mortazavi Y (2012) Apple – biomorphic synthesis of porous ZnO nanostructures for glucose direct electrochemical biosensor. Curr Appl Phys 12(4):1033–1038. doi:10.1016/j.cap.2012.01.001

    Article  Google Scholar 

  • Fulati A, Ali SMU, Asif MH, Alvi NU, Willander M, Brannmark C, Stralfors P, Borjesson SI, Elinder F, Danielsson B (2010) An intracellular glucose biosensor based on nanoflake ZnO. Sens Actuator B-Chem 150(2):673–680. doi:10.1016/j.snb.2010.08.021

    Article  Google Scholar 

  • Gomes SP, Odlozilikova M, Almeida MG, Araujo AN, Couto CM, Montenegro MC (2007) Application of lactate amperometric sol-gel biosensor to sequential injection determination of L-lactate. J Pharm Biomed Anal 43(4):1376–1381. doi:10.1016/j.jpba.2006.11.027

    Article  Google Scholar 

  • Herrero AM, Requena T, Reviejo AJ, Pingarron JM (2004) Determination of l-lactic acid in yoghurt by a bienzyme amperometric graphite-Teflon composite biosensor. Eur Food Res Technol 219(5):557–560. doi:10.1007/s00217-004-0973-7

    Article  Google Scholar 

  • Hibi K, Hatanaka K, Takase M, Ren H, Endo H (2012) Wireless biosensor system for real-time L-lactic acid monitoring in fish. Sensors 12(5):6269–6281. doi:10.3390/s120506269

    Article  Google Scholar 

  • Kong T, Chen Y, Ye YP, Zhang K, Wang ZX, Wang XP (2009) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sens Actuator B-Chem 138(1):344–350. doi:10.1016/j.snb.2009.01.002

    Article  Google Scholar 

  • Labroo P, Cui Y (2013) Flexible graphene bio-nanosensor for lactate. Biosens Bioelectron 41(1):852–856. doi:10.1016/j.bios.2012.08.024

    Article  Google Scholar 

  • Lee CT, Chiu YS, Ho SC, Lee YJ (2011) Investigation of a photoelectrochemical passivated ZnO-based glucose biosensor. Sensors 11(5):4648–4655. doi:10.3390/s110504648

    Article  Google Scholar 

  • Lei Y, Yan XQ, Zhao J, Liu X, Song Y, Luo N, Zhang Y (2011) Improved glucose electrochemical biosensor by appropriate immobilization of nano-ZnO. Colloids Surf B-Biointerfaces 82(1):168–172. doi:10.1016/j.colsurfb.2010.08.034

    Article  Google Scholar 

  • Lei Y, Liu X, Yan XQ, Song Y, Kang Z, Luo N, Zhang Y (2012a) Multicenter uric acid biosensor based on tetrapod-shaped ZnO nanostructures. J Nanosci Nanotechnol 12(1):513–518. doi:10.1166/jnn.2012.5336

    Article  Google Scholar 

  • Lei Y, Luo N, Yan XQ, Zhao YG, Zhang G, Zhang Y (2012b) A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapods for L-lactic acid detection. Nanoscale 4(11):3438–3443. doi:10.1039/c2nr30334e

    Article  Google Scholar 

  • Li X, Qi JJ, Zhang Q, Zhang Y (2012) Temperature-dependent electron transport in ZnO micro/nanowires. J Appl Phys 112(8):084313. doi:10.1063/1.4759311

    Article  Google Scholar 

  • Li XL, Zang JF, Liu YS, Lu ZS, Li Q, Li CM (2013) Simultaneous detection of lactate and glucose by integrated printed circuit board based array sensing chip. Anal Chim Acta 771:102–107. doi:10.1016/j.aca.2013.02.011

    Article  Google Scholar 

  • Liu X, Lin P, Yan XQ, Kang Z, Zhao YG, Lei Y, Li CB, Du HW, Zhang Y (2013) Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid. Sens Actuator B-Chem 176:22–27. doi:10.1016/j.snb.2012.08.043

    Article  Google Scholar 

  • Ma SW, Liao QL, Liu HS, Song Y, Li P, Huang YH, Zhang Y (2012) An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor. Nanoscale 4:6415–6418. doi:10.1039/C2NR31708G

    Article  Google Scholar 

  • Minggang Z, Zhenglong L, Ziqi H, Ke W, Yu Z, Jingyun H, Zhizhen Y (2013) Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor. Biosens Bioelectron 49:318–322. doi:10.1016/j.bios.2013.05.017

    Article  Google Scholar 

  • Monošík R, Streďanský M, Greif G, Šturdík E (2012) A rapid method for determination of l-lactic acid in real samples by amperometric biosensor utilizing nanocomposite. Food Control 23(1):238–244. doi:10.1016/j.foodcont.2011.07.021

    Article  Google Scholar 

  • Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB (2013) Fabrication of lactate biosensor based on lactate dehydrogenase immobilized on cerium oxide nanoparticles. J Colloid Interface Sci 410:158–164. doi:10.1016/j.jcis.2013.08.009

    Article  Google Scholar 

  • Peng SM, Su YK, Ji LW, Wu CZ, Cheng WB, Chao WC (2010) ZnO Nanobridge Array UV Photodetector. J Phys Chem C 114:3204–3208. doi:10.1021/jp909299y

    Article  Google Scholar 

  • Perez S, Fabregas E (2012) Amperometric bienzymatic biosensor for L-lactate analysis in wine and beer samples. Analyst 137(16):3854–3861. doi:10.1039/c2an35227c

    Article  Google Scholar 

  • Pradhan D, Niroui F, Leung KT (2010) High-Performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl Mater Interfaces 2(8):2409–2412. doi:10.1021/am100413u

    Article  Google Scholar 

  • Radoi A, Compagnone D, Valcarcel MA, Placidi P, Materazzi S, Moscone D, Palleschi G (2008) Detection of NADH via electrocatalytic oxidation at single-walled carbon nanotubes modified with Variamine blue. Electrochim Acta 53(5):2161–2169. doi:10.1016/j.electacta.2007.09.031

    Article  Google Scholar 

  • Radoi A, Obreja AC, Eremia SAV, Bragaru A, Dinescu A, Radu G-L (2013) L-Lactic acid biosensor based on multi-layered graphene. J Appl Electrochem 43(10):985–994. doi:10.1007/s10800-013-0594-6

    Article  Google Scholar 

  • Sartain FK, Yang XP, Lowe CR (2006) Holographic lactate sensor. Anal Chem 78:5664–5670. doi:10.1021/ac060416g

    Article  Google Scholar 

  • Suman S, Singhal R, Sharma AL, Malthotra BD, Pundir CS (2005) Development of a lactate biosensor based on conducting copolymer bound lactate oxidase. Sens Actuator B-Chem 107(2):768–772. doi:10.1016/j.snb.2004.12.016

    Article  Google Scholar 

  • Teymourian H, Salimi A, Khezrian S (2013) Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens Bioelectron 49:1–8. doi:10.1016/j.bios.2013.04.034

    Article  Google Scholar 

  • Wang D, Reynolds N (2012) Photoluminescence of zinc oxide nanowires: the effect of surface band bending. ISRN Condens Matter Phys 2012:1–6. doi:10.5402/2012/950354

    Article  Google Scholar 

  • Wang JX, Sun XW, Wei A, Lei Y, Cai XP, Li CM, Dong ZL (2006) Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett 88(23):233106. doi:10.1063/1.2210078

    Article  Google Scholar 

  • Wu F, Huang Y, Huang C (2005) Chemiluminescence biosensor system for lactic acid using natural animal tissue as recognition element. Biosens Bioelectron 21(3):518–522. doi:10.1016/j.bios.2004.10.029

    Article  Google Scholar 

  • Yang PD, Yan HQ, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He RR, Choi H-J (2002) Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater 12(5):323–331. doi:10.1002/1616-3028(20020517)12:5<319:AID-ADFM319>3.0.CO;2-X

    Article  Google Scholar 

  • Yoon HC, Kim H-S (1996) Electrochemical characteristics of a carbon-based thick-film l-lactate biosensor using l-lactate dehydrogenase. Anal Chim Acta 336:57–65. doi:10.1016/S0003-2670(96)00445-X

    Article  Google Scholar 

  • Zhang FF, Wang XL, Ai SY, Sun ZD, Wan Q, Zhu ZQ, Xian YZ, Jin LT, Yamamoto K (2004) Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal Chim Acta 519(2):155–160. doi:10.1016/j.aca.2004.05.070

    Article  Google Scholar 

  • Zhao YG, Yan XQ, Kang Z, Lin P, Fang XF, Lei Y, Ma SW, Zhang Y (2013) Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires. Microchim Acta 180(9–10):759–766. doi:10.1007/s00604-013-0981-z

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Major Research Program of China (2013CB932600), Major Project of International Cooperation and Exchanges (2012DFA50990), the National Natural Science Foundation of China (51232001, 51172022, 51372023), the Research Fund of Co-construction Program from Beijing Municipal Commission of Education, the Fundamental Research Funds for the Central Universities, the Program for Changjiang Scholars and Innovative Research Team in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Yan, X., Kang, Z. et al. Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection. J Nanopart Res 16, 2398 (2014). https://doi.org/10.1007/s11051-014-2398-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2398-y

Keywords

Navigation