Skip to main content
Log in

Catalytic role of Au@TiO2 nanocomposite on enhanced degradation of an azo-dye by electrochemically active biofilms: a quantized charging effect

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A green and sustainable approach to azo dye degradation by an electrochemically active biofilm (EAB) with Au@TiO2 nanocomposite assistance (average size of Au ~8 nm) has been developed with high efficiency and mineralization of toxic intermediates. The EAB-Au@TiO2 system degraded the dye more rapidly than the EAB without the nanocomposite, which indicated the catalytic role of the Au@TiO2 nanocomposite on the dye degradation. Toxicity measurements showed that the dye wastewater treated by the EAB-Au@TiO2 system was almost non-toxic while the dye wastewater treated by the EAB without the nanocomposite showed a high toxicity compared to the parent dye. Quantized charging and Fermi level equilibration within the Au@TiO2 nanocomposite may be attributed to the excellent catalytic activity of the nanocomposite on the dye degradation. A mechanism of the catalytic activity is also proposed. Redox behavior and quantized charging of the nanocomposite were confirmed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), respectively. The proposed protocol can be effectively utilized in wastewater treatment applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anjaneyulu Y, Sreedhara Chary N, Raj SSD (2005) Decolorization of industrial effluents-available methods and emerging technologies—A review. Rev Environ Sci Biotechnol 4:245

    Article  CAS  Google Scholar 

  • Borole AP, Reguera G, Ringeisen B, Wang Z-W, Feng Y, Kim BH (2011) Electroactive biofilms: current status and future research needs. Energy Environ Sci 4:4813–4834

    Article  CAS  Google Scholar 

  • Chang JS, Chen BY, Lin YS (2004) Stimulation of bacterial decolorization of an azo dye by extracellular metabolites from Escherichia coli strain NO3. Bioresource Technol 91:243

    Article  CAS  Google Scholar 

  • Chen S, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten RL (1998) Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280:2098–2101

    Article  CAS  Google Scholar 

  • Choi H, Chen WT, Kamat PV (2012) Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano 6:4418–4427

    Article  CAS  Google Scholar 

  • Dawson A, Kamat PV (2001) Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold capped TiO2 (TiO2/gold) nanoparticles. J Phys Chem B 105:960–966

    Article  CAS  Google Scholar 

  • Erable B, Duteanu NM, Ghangrekar MM, Dumas C, Scott K (2010) Applications of electro- active biofilms. Biofouling 26:57–71

    Article  CAS  Google Scholar 

  • Gupta N, Singh HP, Sharma RK (2011) Metal nanoparticles with high catalytic activity in degradation of methyl orange: an electron relay effect. J Molecular Catalysis A: Chemical 335:248–252

    Article  CAS  Google Scholar 

  • Harris C, Kamat PV (2010) Photocatalytic events of CdSe quantum dots in confined media. Electrodic behavior of coupled platinum nanoparticles. ACS Nano 4:7321–7330

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor Photoctalaysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9:117–140

    Article  CAS  Google Scholar 

  • Kalathil S, Lee J, Cho MH (2011a) Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnol 29:32–37

    Article  CAS  Google Scholar 

  • Kalathil S, Lee J, Cho MH (2011b) Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chem 13:1482–1485

    Article  CAS  Google Scholar 

  • Kalathil S, Lee J, Cho MH (2012a) Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell. Bioresource Technol 119:22–27

    Article  CAS  Google Scholar 

  • Kalathil S, Khan MM, Banerjee AN, Lee J, Cho MH (2012b) A simple biogenic route to rapid synthesis of Au@TiO2 nanocomposites by electrochemically active biofilms. J Nanopart Res 14:1051

    Article  Google Scholar 

  • Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860

    Article  CAS  Google Scholar 

  • Lin J, Zhang X, Li Z, Lei L (2010) Biodegradation of reactive blue 13 in a two stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp Isolate. Bioresource Technol 101:34

    Article  CAS  Google Scholar 

  • Liu L, F-b Li, C-h Feng, X-z Li (2009) Microbial fuel cell with an azo-dye feeding cathode. Appl Microbiol Biotechnol 85:175–183

    Article  CAS  Google Scholar 

  • Lovrić M, Scholz F (2003) Modeling cyclic voltammograms of simultaneous electron and ion transfer at a conic film three-phase electrode. J Electroanalytical Chem 540:89–96

    Article  Google Scholar 

  • Morawski BS, Quan S, Arnold FH (2000) Functional expression and stabilization of horseradish peroxidase by directed evolution in Saccharomyces cerevisiae. Biotechnol Bioeng 76:99

    Article  Google Scholar 

  • Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes and nanopores. Chem Rev 108:2688–2720

    Article  CAS  Google Scholar 

  • Oldfield G, Ung T, Mulvaney P (2000) Au@SnO2 core-shell nanocapacitors. Adv Mater 12:1519–1522

    Article  CAS  Google Scholar 

  • Pant D, Bogaert GV, Diels L, Vanbroekhoven K (2010) A review of substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technol 101:1533–1543

    Article  CAS  Google Scholar 

  • Primo A, Corma A, García H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textiles effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Institute of Chemical Engineers 42:138–157

    Article  CAS  Google Scholar 

  • Takai A, Kamat PV (2011) Capture, store, and discharge. Shuttling photogenerated electrons across TiO2-silver interface. ACS Nano 5:7369–7376

    Article  CAS  Google Scholar 

  • Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J Am Chem Soc 131:7086–7093

    Article  CAS  Google Scholar 

  • Vandevivere PC, Bianchi R, Verstraete W (1998) Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289

    Article  CAS  Google Scholar 

  • Wang H, Zheng SW, Su JQ, Tian Y, Xiong XJ, Zheng TL (2009) Biological decolorization of the reactive dyes reactive black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J Hazard Mater 171:654

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No: 2012R1A1A4A01005951). Shafeer Kalathil was supported by the Human Resources Development Program of Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant (No:20104010100580) funded by the Korean Ministry of Knowledge Economy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo Hwan Cho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalathil, S., Lee, J. & Cho, M.H. Catalytic role of Au@TiO2 nanocomposite on enhanced degradation of an azo-dye by electrochemically active biofilms: a quantized charging effect. J Nanopart Res 15, 1392 (2013). https://doi.org/10.1007/s11051-012-1392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1392-5

Keywords

Navigation