Skip to main content
Log in

Size- and shape-tunable silver nanoparticles created through facile aqueous synthesis

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Growth of silver nanoparticles (NPs) with a size ranging from of 6 ± 0.8–42 ± 1.6 nm was investigated systematically by the NaBH4 reduction of silver nitrate using citrate and poly (vinyl pyrrolidone) (PVP) as stabilizers through a facile one-pot aqueous synthesis. Because of controlling nucleation and growth processes, the NPs revealed narrow size distribution. Citrate and NaCl play important roles for the NPs with spherical morphology because of the adsorption of C6H5O7 3−on the {111} facet of silver particles and the etching of Cl/O2. The addition of PVP resulted in the NPs small size and narrow size distribution. Spherical Ag NPs cannot be acquired by such one-pot reduction method in the absence of sodium citrate and NaCl, indicating the poor balance between the nucleation and growth processes in the reactions. On the basis of the results, reduction of the silver precursor (Ag+) was promoted with sodium citrate, attributed to the higher activity of the citrate reductant. The selective adsorption role of C6H5O7 3− and PVP on the {111} plane, in addition to the stacking fault of {111} plane, led to silver atoms in the reaction solution deposited on {111} facet in the absence of NaCl, and then formed triangular silver nanoplates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc, Chem Commun 801–802

  • Caswell KK, Bender CB, Murphy CJ (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3:667–669

    Article  CAS  Google Scholar 

  • Chang CC, Wu HL, Kuo CH, Huang MH (2008) Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures. Chem Mater 20:7570–7574

    Article  CAS  Google Scholar 

  • Chen S, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2:1003–1007

    Article  CAS  Google Scholar 

  • Chen SH, Carroll DL (2004) Silver nanoplates: size control in two dimensions and formation mechanisms. J Phys Chem B 108:5500–5506

    Article  CAS  Google Scholar 

  • Chen S, Yang Y (2002) Magnetoelectrochemistry of gold nanoparticle quantized capacitance charging. J Am Chem Soc 124:5280–5281

    Article  CAS  Google Scholar 

  • Dong XY, Ji XH, Wu HL, Zhao LL, Li J, Yang WS (2009) Shape control of silver nanoparticles by stepwise citrate reduction. J Phys Chem C 113:6573–6576

    Article  CAS  Google Scholar 

  • Förster S, Antonietti M (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10:195–217

    Article  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    CAS  Google Scholar 

  • Ghosh K, Maiti SN (1996) Mechanical properties of silver-powder-filled polypropylene composites. J Appl Polym Sci 60:323–331

    Article  CAS  Google Scholar 

  • Gou L, Chipara M, Zaleski JM (2007) Convenient, rapid synthesis of Ag nanowires. Chem Mater 19:1755–1760

    Article  CAS  Google Scholar 

  • Guo S, Dong S, Wang E (2009) Rectangular silver nanorods: controlled preparation, liquid–liquid interface assembly, and application in surface-enhanced Raman scattering. Cryst Growth Des 9:372–377

    Article  CAS  Google Scholar 

  • Hao EC, Kelly KL, Hupp JT, Schatz GC (2002) Synthesis of silver nanodisks using polystyrene mesospheres as templates. J Am Chem Soc 124:15182–15183

    Article  CAS  Google Scholar 

  • Horiuchi Y, Shimada M, Kamegawa T, Mori K, Yamashita H (2009) Size-controlled synthesis of silver nanoparticles on Ti-containing mesoporous silica thin film and photoluminescence enhancement of rhodamine 6G dyes by surface plasmon resonance. J Mater Chem 19:6745–6749

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 7:617–618

    Article  Google Scholar 

  • Liang H, Wang W, Wang W, Zhang S, Wei H, Xu H (2010) Controlled synthesis of uniform silver nanospheres. J Phys Chem C 114:7427–7431

    Article  CAS  Google Scholar 

  • Liu MZ, Guyot-Sionnest P (2004) Synthesis and optical characterization of Au/Ag core/shell nanorods. J Phys Chem B 108:5882–5888

    Article  CAS  Google Scholar 

  • Lutter S, Koetz J, Tiersch B, Boschetti-de-Fierro A, Abetz V (2008) Formation of gold nanoparticles in triblock terpolymer-modified inverse microemulsions. Colloids Surf A 329:169–176

    Article  CAS  Google Scholar 

  • Maillard M, Giorgio S, Pileni M-P (2002) Silver nanodisks. Adv Mater 14:1084–1086

    Article  CAS  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösurcgen; von Gustav Mie. Ann alen der Physik 25:377–445

    Article  CAS  Google Scholar 

  • Niu WX, Li ZY, Shi LH, Liu XQ, Li HJ, Han S, Chen J, Xu GB (2008) Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Cryst Growth Des 8:4440–4444

    Article  CAS  Google Scholar 

  • Pastoriza-Santos I, Liz-Marzán LM (2002a) Synthesis of silver nanoprisms in DMF. Nano Lett 2:903–905

    Article  CAS  Google Scholar 

  • Pastoriza-Santos I, Liz-Marzán LM (2002b) Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18:2888–2894

    Article  CAS  Google Scholar 

  • Quaresma P, Soares L, Contar L, Miranda A, Osório I, Carvalho PA, Franco R, Pereira E (2009) Green photocatalytic synthesis of stable Au and Ag nanoparticles. Green Chem 11:1889–1893

    Article  CAS  Google Scholar 

  • Seo D, Yoo CI, Chung IS, Park SM, Ryu S, Song H (2008) Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedra. J Phys Chem C 112:2469–2475

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Preparation of highly positively charged silver nanoballs and their stability. Adv Colloid Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  • Sun YG, Gates B, Mayers B, Xia YN (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2:165–168

    Article  CAS  Google Scholar 

  • Sun Y, Mayers B, Xia Y (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3:675–679

    Article  CAS  Google Scholar 

  • Teng XW, Black D, Watkins NJ, Gas YJ, Yang H (2003) Platinum-maghemite core-shell nanoparticles using a sequential synthesis. Nano Lett 3:261–264

    Article  CAS  Google Scholar 

  • Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chem Eur J 11:440–452

    Article  CAS  Google Scholar 

  • Wiley B, Herricks T, Sun Y, Xia Y (2004) Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4:1733–1739

    Article  CAS  Google Scholar 

  • Xia Y, Xiong Y, Lim B, Skrabalak SE (2008) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 47:2–46

    Article  Google Scholar 

  • Yang Y, Matsubara S, Xiong L, Hayakawa T, Nogami M (2007) Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J Phys Chem C 111:9095–9104

    Article  CAS  Google Scholar 

  • Yin BS, Ma H, Wang S, Chen S (2003) Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J Phys Chem B 107:8898–8904

    Article  CAS  Google Scholar 

  • Yonezawa T, Onoue SY, Kimizuka N (2000) Preparation of highly positively charged silver nanoballs and their stability. Langmuir 16:5218–5220

    Article  CAS  Google Scholar 

  • Zhang Z, Zhao B, Hu L (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid State Chem 121:105–110

    Article  CAS  Google Scholar 

  • Zimmermann C, Feldmann C, Wanner M, Gerthsen D (2007) Nanoscale gold hollow spheres through a microemulsion approach. Small 3:1347–1349

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Program for Taishan Scholars, projects from National Natural Science Foundation of China (21071061), Shandong Provincial Natural Science Foundation, China (ZR2010EZ001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yang, P. & Zhang, L. Size- and shape-tunable silver nanoparticles created through facile aqueous synthesis. J Nanopart Res 15, 1329 (2013). https://doi.org/10.1007/s11051-012-1329-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1329-z

Keywords

Navigation