Skip to main content

Advertisement

Log in

Cisplatin and quantum dots encapsulated in liposomes as multifunctional nanocarriers for theranostic use in brain and skin

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We aimed to develop liposomes for loading both cisplatin and quantum dots (QDs) for both drug delivery and bioimaging. The resultant quantum-dot-liposomes (QDLs) with cisplatin were characterized using dynamic light scattering, transmission electron microscopy (TEM), encapsulation efficiencies, and fluorescence intensity. QDLs composed of CdSe or CdSe/ZnS QDs represented a size of about 100 nm. The QDLs were prepared at a high QD loading efficiency of nearly 100 %. Most QDs were located within the liposomal bilayers as evidenced by TEM. Slow and sustained cisplatin release from QDLs was achieved. The cellular uptake of QDLs demonstrated effective internalization and significant fluorescence in melanoma cells. The signal derived from QDLs could be observed by different wavelength settings. The cisplatin-containing QDLs revealed higher cytotoxic activity compared to an equal dose of free cisplatin. CdSe/ZnS QDLs were intravenously administered to mice, and the biodistribution was observed with an in vivo imaging system. Significant fluorescence signal and cisplatin accumulation were detected in the brain and skin, as verified by ex vivo imaging and drug distribution. Liposomal inclusion could reduce the reticuloendothelial system uptake of QDs and cisplatin. QDLs evaluated in this study represent a new potential method for theranostic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Algar WR, Massey M, Krull UJ (2009) The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics. Trends Anal Chem 28:292–306

    Article  Google Scholar 

  • Al-Jamal WT, Al-Jamal KT, Bomans PH, Frederik PM, Kostarelos K (2008) Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small 4:1406–1415

    Article  CAS  Google Scholar 

  • Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H (2004) Skin penetration and distribution of polymeric nanoparticles. J Controlled Release 99:53–62

    Article  Google Scholar 

  • Arashiro K (2002) The tumor vasculature in cutaneous malignant melanoma: scanning electron microscopy of corrosion casts. Plast Reconstr Surg 110:717–718

    Article  Google Scholar 

  • Biju V, Mundayoor S, Omkumar RV, Anas A, Ishikawa M (2010) Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues. Biotechnol Adv 28:199–213

    Article  CAS  Google Scholar 

  • Bothun GD, Rabideau AE, Stoner MA (2009) Hepatoma cell uptake of cationic multifluorescent quantum dot liposomes. J Phys Chem B 113:7725–7728

    Article  CAS  Google Scholar 

  • Bowden NA, Ashton KA, Avery-Kiejda KA, Zhang XD, Hersey P, Scott RJ (2010) Nucleotide excision repair gene expression after cisplatin treatment in melanoma. Cancer Res 70:7918–7926

    Article  CAS  Google Scholar 

  • Brown MD, Schätzlein AG, Uchegbu IF (2001) Gene delivery with synthetic (non viral) carriers. Int J Pharm 229:1–21

    Article  CAS  Google Scholar 

  • Cheng FY, Wang SPH, Su CH, Tsai TL, Wu PC, Shieh DB, Chen JH, Hsieh PCH, Yeh CS (2008) Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials 29:2104–2112

    Article  CAS  Google Scholar 

  • Chung H, Kim TW, Kwon M, Kwon IC, Jeong SY (2001) Oil components modulate physical characteristics and function of the natural oil emulsions as drug or gene delivery system. J Controlled Release 71:339–350

    Article  CAS  Google Scholar 

  • Clarke SJ, Hollmann CA, Zhang Z, Suffern D, Bradforth SE, Dimitrijevic NM, Minarik WG, Nadeau JL (2006) Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat Mater 5:409–417

    Article  CAS  Google Scholar 

  • Cornish D, Holterhues C, van de Poll-Franse LV, Coebergh JW, Nijsten T (2009) A systematic review of health-related quality of life in cutaneous melanoma. Ann Oncol 20(Suppl 6):51–58

    Article  Google Scholar 

  • Dudu V, Ramcharan M, Gilchrist ML, Holland EC, Vazquez M (2008) Liposome delivery of quantum dots to the cytosol of live cells. J Nanosci Nanotechnol 8:2293–2300

    Article  CAS  Google Scholar 

  • Fang JY, Hung CF, Hwang TL, Huang YL (2005) Physicochemical characteristics and in vivo deposition of liposome-encapsulated tea catechins by topical and intratumor administrations. J Drug Target 13:19–27

    Article  CAS  Google Scholar 

  • Fang JY, Hwang TL, Huang YL (2006) Liposomes as vehicles for enhancing drug delivery via skin routes. Curr Nanosci 2:55–70

    Article  CAS  Google Scholar 

  • Guo G, Lin W, Liang J, He Z, Xu H, Yang X (2007) Probing the cytotoxicity of CdSe quantum dots with surface modification. Mater Lett 61:1641–1644

    Article  CAS  Google Scholar 

  • Harrington KJ, Syrigos KN, Vile RG (2002) Liposomally targeted cytotoxic drugs for the treatment of cancer. J Pharm Pharmacol 54:1573–1600

    Article  CAS  Google Scholar 

  • Hidalgo E, Domínguez C (1998) Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol Lett 98:169–179

    Article  CAS  Google Scholar 

  • Hsu SH, Al-Suwayeh SA, Chen CC, Chi CH, Fang JY (2011) PEGylated liposomes incorporated with nonionic surfactants as an apomorphine delivery system targeting the brain: in vitro release and in vivo real-time imaging. Curr Nanosci 7:191–199

    Article  CAS  Google Scholar 

  • Huang ZR, Hua SC, Yang YL, Fang JY (2008) Development and evaluation of lipid nanoparticles for camptothecin delivery: a comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol Sin 29:1094–1102

    Article  CAS  Google Scholar 

  • Hwang TL, Lee WR, Hua SC, Fang JY (2007) Cisplatin encapsulated in phosphatidylethanolamine liposomes enhances the in vitro cytotoxicity and in vivo intratumor drug accumulation against melanomas. J Dermatol Sci 46:11–20

    Article  CAS  Google Scholar 

  • Hwang TL, Fang CL, Chen CH, Fang JY (2009a) Permeation enhancer-containing water-in-oil nanoemulsions as carriers for intravesical cisplatin delivery. Pharm Res 26:2314–2323

    Article  CAS  Google Scholar 

  • Hwang TL, Lin YK, Chi CH, Huang TH, Fang JY (2009b) Development and evaluation of perfluorocarbon nanobubbles for apomorphine delivery. J Pharm Sci 98:3735–3747

    Article  CAS  Google Scholar 

  • Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    Article  CAS  Google Scholar 

  • Jeong SH, Kim JH, Yi SM, Lee JP, Kim JH, Sohn KH, Park KL, Kim MK, Son SW (2010) Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method. Biochem Biophys Res Commun 394:612–615

    Article  CAS  Google Scholar 

  • Kloepfer JA, Cohen N, Nadeau JL (2004) FRET between CdSe quantum dots in lipid vesicles and water- and lipid-soluble dyes. J Phys Chem B 108:17042–17049

    Article  CAS  Google Scholar 

  • Koziara JM, Lockman PR, Allen DD, Mumper RJ (2006) The blood–brain barrier and brain drug delivery. J Nanosci Nanotechnol 6:2712–2735

    Article  CAS  Google Scholar 

  • Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436

    Article  CAS  Google Scholar 

  • MacKie RM, Hauschild A, Eggermont AMM (2009) Epidemiology of invasive cutaneous melanoma. Ann Oncol 20(Suppl 6):1–7

    Article  Google Scholar 

  • Martin OC, Pagano RE (1987) Transbilayer movement of fluorescent analogs of phosphatidylserine and phosphatidylethanolamine at the plasma membrane of cultured cells. J Biol Chem 262:5890–5898

    CAS  Google Scholar 

  • Marty C, Schwendener RA (2005) Cytotoxic tumor targeting with scFv antibody-modified liposomes. Adopt Immunother 109:389–401

    Article  CAS  Google Scholar 

  • Maruyama K, Ishida O, Takizawa T, Moribe K (1999) Possibility of active targeting to tumor tissues with liposomes. Adv Drug Deliv Rev 40:89–102

    Article  CAS  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  • Müller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47:3–19

    Article  Google Scholar 

  • Ozkan M (2004) Quantum dots and other nanoparticles: what can they offer to drug discovery? Drug Discov Today 9:1065–1071

    Article  CAS  Google Scholar 

  • Pan J, Feng SS (2009) Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials 30:1176–1183

    Article  CAS  Google Scholar 

  • Parak N, Pellegrino T, Plank C (2005) Labelling of cells with quantum dots. Nanotechnology 16:R9–R15

    Article  CAS  Google Scholar 

  • Qin Y, Fan W, Chen H, Yao N, Tang W, Tang J, Yuan W, Kuai R, Zhang Z, Wu Y, He Q (2010) In vitro and in vivo investigation of glucose-mediated brain-targeting liposomes. J Drug Target 18:536–549

    Article  CAS  Google Scholar 

  • Saito H, Miyako Y, Handa T, Miyajima K (1997) Effect of cholesterol on apolipoprotein A-I binding to lipid bilayers and emulsions. J Lipid Res 38:287–294

    CAS  Google Scholar 

  • Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon AA (2007) Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles. J Controlled Release 124:28–34

    Article  CAS  Google Scholar 

  • Sigot V, Arndt-Jovin DJ, Jovin TM (2010) Targeted cellular delivery of quantum dots loaded on and in biotinylated liposomes. Bioconjugate Chem 21:1465–1472

    Article  CAS  Google Scholar 

  • Simberg D, Weisman S, Talmon Y, Barenholz Y (2004) DOTAP (and other cationic lipids): chemistry, biophysics, and transfection. Crit Rev Ther Drug Carrier Syst 4:257–317

    Article  Google Scholar 

  • Sinnberg T, Lasithiotakis K, Niessner H, Schittek B, Flaherty KT, Kulms D, Maczey E, Campos M, Gogel J, Garbe C, Meier F (2009) Inhibition of PI3K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. J Invest Dermatol 129:1500–1515

    Article  CAS  Google Scholar 

  • Sleight RG, Pagano RE (1985) Transbilayer movement of a fluorescent phosphatidylethanolamine analogue across the plasma membranes of cultured mammalian cells. J Biol Chem 260:1146–1154

    CAS  Google Scholar 

  • Smith AM, Duan H, Rhyner MN, Ruan G, Nie S (2006) A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys Chem Chem Phys 8:3895–3903

    Article  CAS  Google Scholar 

  • Susumu K, Mei BC (2009) Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat Protoc 4:424–436

    Article  CAS  Google Scholar 

  • Tamaddon AM, Shirazi FH, Moghimi HR (2007) Modeling cytoplasmic release of encapsulated oligonucleotides from cationic liposomes. Int J Pharm 336:174–182

    Article  CAS  Google Scholar 

  • van Hennik MB, van der Vijgh WJF, Klein I, Elferink F, Vermorken JB, Winograd B, Pinedo HM (1987) Comparative pharmacokinetics of cisplatin and three analogues in mice and humans. Cancer Res 47:6297–6301

    Google Scholar 

  • Wang Y, Chen L (2011) Quantum dots, lighting up the research and development of nanomedicine. Nanomed-Nanotechnol Biol Med 7:385–402

    Article  CAS  Google Scholar 

  • Wang J, Maitani Y, Takayama K (2002) Antitumor effects and pharmacokinetics of aclacinomycin A carried by injectable emulsions composed of vitamin E, cholesterol, and PEG-lipid. J Pharm Sci 91:1128–1134

    Article  CAS  Google Scholar 

  • Wang C, Gao X, Su X (2010) In vitro and in vivo imaging with quantum dots. Anal Bioanal Chem 397:1397–1415

    Article  CAS  Google Scholar 

  • Xue M, Wang X, Wang H, Tang B (2011) The preparation of glutathione-capped CdTe quantum dots and their use in imaging of cells. Talanta 83:1680–1686

    Article  CAS  Google Scholar 

  • Yang RSH, Chang LW, Wu JP, Tsai MH, Wang HJ, Kuo YC, Yeh TK, Yang CS, Lin P (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: iCRMS quantitative assessment. Environ Health Perspect 115:1339–1343

    Article  CAS  Google Scholar 

  • Yokoyama M, Okano T, Sakurai Y, Suwa S, Kataoka K (1996) Introduction of cisplatin into polymeric micelle. J Controlled Release 39:351–356

    Article  CAS  Google Scholar 

  • Yong KT (2010) Biophotonics and biotechnology in pancreatic cancer: cyclic RGD-peptide-conjugated type II quantum dots for in vivo imaging. Pancreatology 10:553–564

    Article  CAS  Google Scholar 

  • Yotsuyanagi T, Usami M, Noda Y, Nagata M (2002) Computational consideration of cisplatin hydrolysis and acid dissociation in aqueous media: effect of total drug concentrations. Int J Pharm 246:95–104

    Article  CAS  Google Scholar 

  • Zhang LW, Monteiro-Riviere NA (2008) Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin Pharmacol Physiol 21:166–180

    Article  Google Scholar 

  • Zhang X, Xie J, Li S, Wang X, Hou X (2003) The study on brain targeting of the amphotericin B liposomes. J Drug Target 11:117–122

    Article  CAS  Google Scholar 

  • Zhang H, Zeng X, Li Q, Gaillard-Kelly M, Wagner CR, Yee D (2009) Fluorescent tumor imaging of type I IGF receptor in vivo: comparison of antibody-conjugated quantum dots and small-molecule fluorophore. Br J Cancer 101:71–79

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project was supported by the National Plan for Science and Technology in the kingdom of Saudi Arabia (grant number: 10-NAN1030-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-You Fang.

Additional information

Li-Wen Zhang and Chih-Jen Wen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, LW., Wen, CJ., Al-Suwayeh, S.A. et al. Cisplatin and quantum dots encapsulated in liposomes as multifunctional nanocarriers for theranostic use in brain and skin. J Nanopart Res 14, 882 (2012). https://doi.org/10.1007/s11051-012-0882-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0882-9

Keywords

Navigation