Skip to main content
Log in

Biomimetic growth of gallic acid–ZnO hybrid assemblies and their applications

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, we probed the biomimetic formation of gallic acid (GA)–ZnO nanoparticle hybrids. It was found that the morphologies formed were dependent upon pH values, resulting in GA–ZnO hybrids of varying shapes such as micro or nanoplates or fibers. The formed supramolecular GA–ZnO hybrids were found to be luminescent as indicated by confocal microscopy and were utilized for the photocatalytic degradation of the organic dye methylene blue. We also explored the bactericidal effects of the hybrids on Staphylococcus aureus (S. aureus) as well as Escherichia Coli (E. Coli). Thus, we have developed a new class of shape-controlled nanohybrid assemblies via mild, green synthetic methods that may be utilized for photocatalytic degradation for environmental remediation as well as for antibacterial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aaronson CH, Amekura H, Sato Y, Kishimoto N (2011) Vacuum fluorescent displays utilizing ZnO nanoparticles. J Appl Phys 109:24506–24507. doi:10.1063/1.3536631

    Google Scholar 

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937. doi:10.1126/science.271.5251.933

    CAS  Google Scholar 

  • Andronic L, Duta A (2008) The influence of TiO2 powder and film on the photodegradation of methyl orange. Mater Chem Phys 112:1078–1082. doi:10.1016/j.matchemphys.2008.06.059

    CAS  Google Scholar 

  • Ashiry KO, Zhao YH, Shao KZ, Su ZM, Xu GJ (2009) Syntheses and characterizations of three coordination polymers based on dipyridylbenzoates and 1,4-benzenedicarboxylate. Polyhedron 28:975–979. doi:10.1016/j.poly.2008.12.056

    CAS  Google Scholar 

  • Balzani V, Campagna S, Denti G, Juris A, Serroni S, Venturi M (1998) Designing dendrimers based on transition-metal complexes. Light-harvesting properties and predetermined redox patterns. Acc Chem Res 31:26–34. doi:10.1021/ar950202d

    CAS  Google Scholar 

  • Banerjee IA, Yu L, Matsui H (2005) Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures. J Am Chem Soc 127:16002–16003. doi:10.1021/ja054907e

    CAS  Google Scholar 

  • Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shaverdi HR, Moballegh A, Moghaddam KM, Shaverdi AR (2010) ZnO nanoparticles enhanced antibacterial activity of ciproflaxin against Staphylococcus aureus and Escherichia Coli. J Biomed Mater Res B Appl Biomater 93:557–561. doi:10.1002/jbm.b.31615

    Google Scholar 

  • Bao N, Shen L, Takata T, Domen K (2008) Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem Mater 20:110–117. doi:10.1021/cm7029344

    CAS  Google Scholar 

  • Bhargava RN, Gallagher D (1994) Optical properties of manganese-doped nanocrystals of ZnS. Phys Rev Lett 72:416–419. doi:10.1103/PhysRevLett.72.416

    CAS  Google Scholar 

  • Billes F, Mohammed-Ziegler I, Bombicz P (2007) Vibrational Spectroscopy study on the quantum chemical model and X-ray structure of gallic acid, solvent effect on the structure and spectra. Vib Spectrosc 43:193–202. doi:10.1016/j.vibspec.2006.07.008

    CAS  Google Scholar 

  • Bodini ME, Copia G, Tapia R, Leighton F, Herrera L (1999) Iron complexes of quercetin in aprotic medium. Redox chemistry and interaction with superoxide anion radical. Polyhedron 18:2233–2239. doi:10.1016/S0277-5387(99)00124-2

    CAS  Google Scholar 

  • Braun E, Eichen Y, Sivan U, Ben Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778. doi:10.1038/35826

    CAS  Google Scholar 

  • Britt J, Ferekides C (1993) Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl Phys Lett 62:2851–2852. doi:10.1063/1.109629

    CAS  Google Scholar 

  • Carcia PF, McLean RS, Reilly MH (2005) Oxide engineering of ZnO thin-film transistors for flexible electronics. J Soc Inf Display 13:547–554. doi:10.1889/1.2012634

    CAS  Google Scholar 

  • Chen CC (2007) Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions. J Mol Catal A Chem 264:82–92. doi:10.1016/j.molcata.2006.09.013

    CAS  Google Scholar 

  • Chu S, Olmedo M, Yang Z, Kong J, Liu J (2008) Electrically pumped ultraviolet ZnO diode lasers on Si. Appl Phys Lett 93:181106/1–181106/3. doi:10.1063/1.3012579

    CAS  Google Scholar 

  • Cui HN, Zhang HJ, Xi SQ (1998) Preparation and photoluminescence study of ultrafine cadmium sulfide particles. J Mater Sci Lett 17:913–915. doi:10.1023/A:1026448219504

    CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature 338:596–597. doi:10.1038/338596a0

    CAS  Google Scholar 

  • Daneshvar N, Salari D, Khataee AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A 162:317–322. doi:10.1016/S1010-6030(03)00378-2

    CAS  Google Scholar 

  • Erdemgil FZ, Şanli S, Şanli N, ÖZkan G, Barbosa J, Guiteras J, Beltrán JL (2007) Determination of pKa values of some hydroxylated benzoic acids in methanol-water binary mixtures by LC methodology and potentiometry. Talanta 72:489–496. doi:10.1016/j.talanta.2006.11.007

    CAS  Google Scholar 

  • Fabelo O, Pasán J, Canˇ adillas-Delgado L, Delgado FS, Labrador A, Lloret F, Julve M, Ruiz-Pérez C (2008) (4, 4) rectangular lattices of cobalt(II) with 1, 2, 4, 5-benzenetetracarboxylic acid: influence of the packing in the crystal structure. Crys Growth Des 8:3984–3992. doi:10.1021/cg800067k

    CAS  Google Scholar 

  • Frese KW (1982) A high efficiency single-crystal CdSe photoelectrochemical solar cell and an associated loss mechanism. Appl Phys Lett 1982:275–277. doi:10.1063/1.93036

    Google Scholar 

  • Ge JP, Li YD (2004) Selective atmospheric pressure chemical vapor deposition route to CdS arrays, Nanowires, and Nanocombs. Adv Funct Mater 14:157–162. doi:10.1002/adfm.200305051

    CAS  Google Scholar 

  • Gutschke SOH, Price DJ, Powell AK, Wood PT (2001) Hydrothermal synthesis, structure, and magnetism of [Co2(OH){1,2,3-(O2C)3C6H3}(H2O)]·H2O and [Co2(OH){1,2,3-(O2C)3C6H3}]: magnetic -chains with mixed cobalt geometries. Angew Chem 40:1920–1923. doi:10.1002/1521-3773(20010518)40:10<1920:AID-ANIE1920>3.0.CO;2-2

    CAS  Google Scholar 

  • Herzog B, Mongiat S, Deshayes C, Neuhaus M, Sommer K, Mantler A (2002) In vivo and in vitro assessment of UVA protection by sunscreen formulations containing either butyl methoxy dibenzoyl methane, methylene bis-benzotriazolyl tetramethylbutylphenol, or microfine ZnO. Int J Cosmet Sci 24:170–185. doi:10.1046/j.1467-2494.2002.00137.x

    CAS  Google Scholar 

  • Hider RC, Liu ZD, Khodr HH (2001) Metal chelation of polyphenols. Methods Enzymol 335:190–203. doi:10.1016/S0076-6879(01)35243-6

    CAS  Google Scholar 

  • Huang H, Fang G, Mo X, Long H, Yua L, Dong B, Meng X, Zhao X (2009) ZnO-based fairly pure ultraviolet light-emitting diodes with a low operation voltage. Electron Device Lett 30:1063–1065. doi:10.1109/LED.2009.2028904

    CAS  Google Scholar 

  • Irzh A, Genish I, Klein L, Solovyov LA, Gedanken A (2010) Synthesis of ZnO and Zn nanoparticles in microwave plasma and their deposition on glass slides. Langmuir 26:5976–5984. doi:10.1021/la904499s

    CAS  Google Scholar 

  • Johnson KT, Gribb TE, Smoak EM, Banerjee IA (2010) Self-assembled nanofibers from leucine derived amphiphiles as nanoreactors for growth of ZnO nanoparticles. Chem Commun 46:1757–1759. doi:10.1039/B921254J

    CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76. doi:10.1111/j.1574-6968.2007.01012

    CAS  Google Scholar 

  • Kang MS, Oh JS, Kang IC, Hong SJ, Choi CHJ (2008) Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J Microbiology 46:744–750. doi:10.1007/s12275-008-0235-7

    CAS  Google Scholar 

  • Kennedy JA, Powell K, Kipton J (1985) Polyphenol interactions with aluminum(III) and iron(III): their possible involvement in the podzolization process. Aust J Chem 38:879–888. doi:10.1071/CH9850879

    CAS  Google Scholar 

  • Khodja AA, Sehili T, Pilichowski JF, Boule P (2001) Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J Photochem Photobiol A 141:231–236. doi:10.1016/S1010-6030(01)00423-3

    CAS  Google Scholar 

  • Kim SW, Han YW, Lee ST, Jeong HJ, Kim SH, Kim IH, Lee SO, Kim DG, Kim SZ, Park WH (2008) A superoxide anion generator, pyrogallol, inhibits the growth of HeLa cells via cell cycle arrest and apoptosis. Mol Carcinog 47:114–125. doi:10.1002/mc.20369

    CAS  Google Scholar 

  • Konenkamp R, Word RC, Godinez M (2005) Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes. Nano Lett 5:2005–2008. doi:10.1021/nl051501r

    CAS  Google Scholar 

  • Kong XY, Ding Y, Yang R, Wang ZL (2004) Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 303:1348–1352. doi:10.1126/science.1092356

    CAS  Google Scholar 

  • Koren E, Kohen R, Ginsburg IA (2009) A cobalt-based tetrazolium salts reduction test to assay polyphenols. J Agric Food Chem 57:7644–7650. doi:10.1021/jf9006449

    CAS  Google Scholar 

  • Kratz JM, Andrighetti-Frohner CR, Leal PC, Nunes RJ, Yunes RA, Trybala E, Bergstrom T, Barardi CR, Simoes CM (2008) Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate. Biol Pharm Bull 31:903–907. doi:10.1248/bpb.31.903

    CAS  Google Scholar 

  • Kumar N, Dorfman A, Hahm J (2006) Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays. Nanotechnology 17:2875. doi:10.1088/0957-4484/17/12/009

    CAS  Google Scholar 

  • Law M, Greene LE, Johnson JC, Saykally R, Yang PD (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459. doi:10.1038/nmat1387

    CAS  Google Scholar 

  • Le Nest G, Caille O, Woudstra M, Roche S, Guerlesquin F, Lexa D (2004) Zn–polyphenol chelation: complexes with quercetin, (+)-catechin, and derivatives: I optical and NMR studies. Inorg Chim Acta 357:775–784. doi:10.1016/j.ica.2003.09.014

    CAS  Google Scholar 

  • Leenheer JA, Brown GK, MacCarthy P, Cabaniss SE (1998) Models of metal binding structures in fulvic acid from the Suwannee river, Georgia. Environ Sci Technol 32:2410–2416. doi:10.1021/es9708979

    CAS  Google Scholar 

  • Li CY (2009) Polymer single crystal meets nanoparticles. J Polym Sci Poly Phys 47:2436–2440. doi:10.1002/polb.21855

    CAS  Google Scholar 

  • Li Z, Du YM (2003) Biomimic synthesis of CdS nanoparticles with enhanced luminescence. Mater Lett 57:2480. doi:10.1016/S0167-577X(02)01297-1

    CAS  Google Scholar 

  • Liaoa DL, Badoura CA, Liao BQ (2008) Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. J Photochem Photobiol A 194:11–19. doi:10.1016/j.jphotochem.2007.07.008

    Google Scholar 

  • Lin Z, Jiang F, Chen L, Yuan D, Hong M (2005) New 3-D chiral framework of indium with 1, 3, 5-benzenetricarboxylate. Inorg Chem 44:73–76. doi:10.1021/ic0494962

    CAS  Google Scholar 

  • Lizama C, Freer J, Baeza J, Mansilla HD (2002) Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspensions. Catal Today 76:235–239. doi:10.1016/S0920-5861(02)00222-5

    CAS  Google Scholar 

  • Ma C, Ding Y, Moore D, Wang XD, Wang ZL (2004) Single-crystal CdSe Nanosaws. J Am Chem Soc 126:708–709. doi:10.1021/ja0395644

    CAS  Google Scholar 

  • Ma N, Yang J, Stewart KM, Kelle SO (2007) DNA-passivated CdS nanocrystals: luminescence, bioimaging, and toxicity profiles. Langmuir 23:12783–12787. doi:10.1021/la7017727

    CAS  Google Scholar 

  • Ma Y, Mehltretter G, Plüg C, Rademacher N, Schmidt MU, Co¨lfen H (2009) PY181 pigment microspheres of nanoplates synthesized via polymer-induced liquid precursors. Adv Funct Mater 19:2095–2101. doi:10.1002/adfm.200900316

    CAS  Google Scholar 

  • Mahamuni S, Borgohain K, Bendre BS (1999) Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J Appl Phys 85:2861–2865. doi:10.1063/1.369049

    CAS  Google Scholar 

  • Mai FD, Chen CC, Chen JL, Liu SC (2008) Photodegradation of methyl green using visible irradiation in ZnO suspensions: determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry method. J Chromatogr A 1189:355–365. doi:10.1016/j.chroma.2008.01.027

    CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadyay D, Sarker G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492. doi:10.1007/s00253-005-0179-3

    CAS  Google Scholar 

  • Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505. doi:10.1038/365499a0

    CAS  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. In: Compton RG, Davies G, Evans J (eds), chapter 4. Oxford University Press, Oxford, pp 38–67

  • Marci C, Augugliaro V, Munoz MJL, Martin C, Palmisano L, Rives V, Sehhiavello M, Tilley RJD, Venezia AM (2001) Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. J Phys Chem B 105:1026–1032. doi:10.1021/jp003172

    CAS  Google Scholar 

  • Masumoto Y, Takagahara T (2002) Semiconductor quantum dots: physics, spectroscopy and applications. In: Avouris P, Klaus von Klitzing DHC, Sakaki H, Wiesendanger R (eds), chapter 12. Springer-Verlag, New York, pp 457–479

  • McDonald M, Mila I, Scalbert A (1996) Precipitation of metal ions by plant polyphenols: optimal conditions and origin of precipitation. J Agric Food Chem 44:599–606. doi:10.1021/jf950459q

    CAS  Google Scholar 

  • Melo R, Leal JP, Takács E, Wojnárovits L (2009) Radiolytic degradation of gallic acid and its derivatives in aqueous solution. J Hazard Mater 172:1185–1192. doi:10.1016/j.jhazmat.2009.07.122

    CAS  Google Scholar 

  • Murciaa MJ, Shawa DL, Long EC, Naumann CA (2008) Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings. Optics Commun 281:1771–1780. doi:10.1016/j.optcom.2007.07.069

    Google Scholar 

  • Murugavel R, Krishnamurthy D, Sathiyendiran M (2002) Anionic metal-organic and cationic organic layer alternation in the coordination polymers [{M(BTEC)(OH2)4}·{C4H12N2}·4H2O]n (M = Co, Ni, and Zn; BTEC = 1,2,4,5-benzenetetracarboxylate). J Chem Soc Dalton Trans 31:34–39. doi:10.1039/B105687P

    Google Scholar 

  • Newman MD, Stotland M, Ellis JI (2009) The safety of nanosized particles in titanium dioxide—and zinc oxide—based sunscreens. J Am Acad Dermatol 61:685–692. doi:10.1016/j.jaad.2009.02.051

    CAS  Google Scholar 

  • Niemetz R, Gross GG (2005) Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry 66:2001–2011. doi:10.1016/j.phytochem.2005.01.009

    CAS  Google Scholar 

  • Öztürk S, Taşaltin N, Kilinç N, Öztürk ZZ (2009) Fabrication of ZnO nanotubes using AAO template and sol-gel method. J Optoelectron Biomed Mater 1:15–19. doi:10.1007/s00339-009-5504-8575LZ

    Google Scholar 

  • Parida KM, Dash SS, Das DP (2006) Physico-chemical characterization and photocatalytic activity of zinc oxide prepared by various methods. J Colloid Interface Sci 298:787–793. doi:10.1016/j.jcis.2005.12.053

    CAS  Google Scholar 

  • Park SK, Park JH, Ko KY, Yoon S, Chu KS, Kim W, Do YR (2009) Hydrothermal-electrochemical synthesis of ZnO nanorods. Cryst Growth Des 9:3615–3620. doi:10.1021/cg9003593

    CAS  Google Scholar 

  • Percherancier JP, Chapelion R, Pouyet B (1995) Semiconductor sensitized photodegradation of pestcides in water: the case of carbetamide. J Photochem Photobiol A 87:261–265. doi:10.1016/1010-6030(94)03993-5

    CAS  Google Scholar 

  • Poulios I, Kositzi M, Kouras A (1998) Photocatalytic decomposition of trichlopyr over aqueous semiconductor suspensions. J Photochem Photobiol A 115:175–179. doi:10.1016/S1010-6030(98)00259-7

    CAS  Google Scholar 

  • Prathna T.C., L. Mathew, N. Chandrasekaran, Ashok M. Raichur, A. Mukherjee (2010). Biomimetic synthesis of nanoparticles: science, technology & applicability, biomimetics learning from nature. In: Amitava M (ed). ISBN: 978-953-307-025-4, InTech. Available from: http://www.intechopen.com/articles/show/title/biomimetic-synthesis-of-nanoparticles-science-technology-amp-applicability

  • Robert F, Tinant B, Clérac R, Jacquemin P-L, Garcia Y (2010) Self assembly of asymmetric tetranuclear Cu(II) [2 X 2] grid-like complexes and of a dinuclear Ni(II) complex from pyridyl-phenol schiff base ligands. Polyhedron 29:2739–2746. doi:10.1016/j.poly.2010.06.017

    CAS  Google Scholar 

  • Salvador A, Pascual-Martía MC, Adella JR, Requenia A, March JG (2000) Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams. J Pharm Biomed 22:301–306. doi:10.1016/S0731-7085(99)00286-1

    CAS  Google Scholar 

  • Sawai J, Yoshikawa T (2004) Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 96:803–809. doi:10.1111/j.1365-2672.2004.02234

    CAS  Google Scholar 

  • Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1995) Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method. J Chem Eng Jpn 28:288–293. doi:10.1252/jcej.28.288

    CAS  Google Scholar 

  • Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256. doi:10.1002/(SICI)1521-4095

    CAS  Google Scholar 

  • Slabbert N (1991) Complexation of condensed tannins with metal ions. In: Hemingway RW, Laks PE (eds) Plant polyphenols. Plenum Press, New York, pp 421–445

    Google Scholar 

  • Slocik JM, Moore JT, Wright DW (2002) Monoclonal antibody recognition of histidine-rich peptide encapsulated nanoclusters. Nano Lett 2:169–173. doi:10.1021/nl015706l

    CAS  Google Scholar 

  • Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc 113:2826–2833. doi:10.1021/ja00008a004

    CAS  Google Scholar 

  • Spear RL, Tamayev R, Fath KR, Banerjee IA (2007) Templated growth of calcium phosphate on tyrosine derived microtubules and their biocompatibility. Colloid Surfaces B 60:158–166. doi:10.1016/j.colsurfb.2007.05.025

    CAS  Google Scholar 

  • Stallings MD, Morrison MM, Sawyer DT (1981) Redox chemistry of metal-catechol complexes in aprotic media. 1. Electrochemistry of substituted catechols and their oxidation products. Inorg Chem 20:2655–2660. doi:10.1021/ic50222a053

    CAS  Google Scholar 

  • Stauffer MT, Weber SG (1999) Optical control of divalent metal ion binding to a photochromic catechol: photoreversal of tightly bound Zn2+. Anal Chem 71:1146–1151. doi:10.1021/ac980582r

    CAS  Google Scholar 

  • Storhoff JJ, Mirkin CA (1999) Programmed materials synthesis with DNA. Chem Rev 99:1849–1862. doi:10.1021/cr970071p

    CAS  Google Scholar 

  • Storks KH (1938) Electron-diffraction examination of some linear high polymers. J Am Chem Soc 60:1753–1761. doi:10.1021/ja01275a013

    CAS  Google Scholar 

  • Tan F, Qu S, Wu J, Liu K, Zhou S, Wang Z (2011) Preparation of SnS2 colloidal quantum dots and their application in organic/inorganic hybrid solar cells. Nanoscale Res Lett 6:298. doi:10.1186/1556-276X-6-298

    Google Scholar 

  • Tayade RJ, Natarajan TS, Bajaj HC (2009) Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes. Ind Eng Chem Res 48:10262–10267. doi:10.1021/ie9012437

    CAS  Google Scholar 

  • Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ, Rodriguez MA, Konishi H, Xu H (2003) Complex and oriented ZnO nanostructures. Nat Mater 2:821–826. doi:10.1038/nmat1014

    CAS  Google Scholar 

  • Tsukazaki A, Kubota M, Ohtomo A, Onuma T, Ohtani K, Ohno H, Chichibu SF, Kawasaki M (2005) Blue light-emitting diode based on ZnO. Jpn J Appl Phys 44:L643–L645. doi:10.1143/JJAP.44.L643

    CAS  Google Scholar 

  • Tsuzuki T, McCormick PG (2001) ZnO nanoparticles synthesized by mechanochemical processing. Scripta Mater 44:1731–1734. doi:10.1088/1742-6596/26/1/075

    CAS  Google Scholar 

  • Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246. doi:10.1126/science.1124005

    CAS  Google Scholar 

  • Wang XD, Summers CJ, Wang ZL (2004) Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4:423–426. doi:10.1021/nl035102c

    CAS  Google Scholar 

  • Wanga W, Chena Q, Jianga C, Yanga D, Liub X, Xu S (2007) One-step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone). Colloid Surface A 301:73–79. doi:10.1016/j.colsurfa.2006.12.037

    Google Scholar 

  • Warrier M, Lo MKF, Monbouquette H, Garcia-Garibay MA (2004) Photocatalytic reduction of aromatic azides to amines using CdS and CdSe nanoparticles. Photochem Photobiol Sci 3:859–863. doi:10.1039/B404268A

    CAS  Google Scholar 

  • Watt AA, Blake D, Warner JH, Thomsen EA, Tavenner EL, Dunlop HR, Meredith P (2005) Lead sulfide nanocrystal: conducting polymer solar cells. J Phys D Appl Phys 38:2006–2012. doi:10.1088/0022-3727/38/12/023

    CAS  Google Scholar 

  • Xu X, Wang J, Tian J, Wang X, Dai J, Liu X (2011) Hydrothermal and post-heat treatments of TiO2/ZnO composite powder and its photodegradation behavior on methyl orange. Ceram Int 37:2201–2206. doi:10.1016/j.ceramint.2011.03.067

    CAS  Google Scholar 

  • Xua A, Li X, Yec S, Yinc G, Zeng Q (2011) Catalyzed oxidative degradation of methylene blue by in situ generated cobalt(II)-bicarbonate complexes with hydrogen peroxide. Appl Catal B Environ 102:37–43. doi:10.1016/j.apcatb.2010.11.022

    Google Scholar 

  • Yakimova R, Steinhoff G, Petoral RM Jr, Vahlberg C, Khranovskyy V, Yazdi GR, Uvdal K, Spetz AL (2007) Novel material concepts of transducers for chemical and biosensors. Biosens Bioelectron 22:2780–2785. doi:10.1016/j.bios.2006.12.032

    CAS  Google Scholar 

  • Yamamoto O, Sawai J, Sasamoto T (2000) Change in antibacterial characteristics with doping amount of ZnO in MgO–ZnO solid solution. Int J Inorg Mater 2:451–454. doi:10.1016/S1466-6049(00)00045-3

    Google Scholar 

  • Yeber MC, Rodriguez J, Freer J, Baeza J, Duran N, Mansilla HD (1999) Advanced oxidation of a pulp mill bleaching wastewater. Chemosphere 39:1679–1683. doi:10.1016/S0045-6535(99)00068-5

    CAS  Google Scholar 

  • Yen G-C, Duh P-D, Tsai HL (2002) Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem 79:307–313. doi:10.1016/S0308-8146(02)00145-0

    CAS  Google Scholar 

  • Yoosaf K, Ipe BI, Suresh C, Thomas KG (2007) In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J Phys Chem C 111:12839–12847. doi:10.1021/jp073923q

    CAS  Google Scholar 

  • You BR, Moon HJ, Han YH, Park WH (2010a) Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food Chem Toxicol 48:1334–1340. doi:10.1016/j.fct.2010.02.034

    CAS  Google Scholar 

  • You JB, Zhang XW, Zhang SG, Wang JX, Yin ZG, Tan HR, Zhang WJ, Chu PK, Cui B, Wowchak AM, Dabiran AM, Chow PP (2010b) Improved electroluminescence from n-ZnO/AlN/p-GaN heterojunction light-emitting diodes. Appl Phys Lett 96:201102. doi:10.1063/1.3430039

    Google Scholar 

  • Yu P, Zhu K, Norman AG, Ferrere S, Frank AJ, Nozik AJ (2006) Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J Phys Chem B 110:25451–25454. doi:10.1021/jp064817b

    CAS  Google Scholar 

  • Zaban A, Micic OI, Gregg BA, Nozik AJ (1998) Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14:3153–3156. doi:10.1021/la9713863

    CAS  Google Scholar 

  • Zhang Y-M, Rock CO (2004) Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase. J Biol Chem 279:30994–31001. doi:10.1074/jbc.M403697200

    CAS  Google Scholar 

  • Zhang XD, Jin J, Wang G, Yang WS, Li TJ (2002) Preparation of CdS nanoparticles on Langmuir monolayers of oligomeric DNA. Mater Chem Phys 77:899–902. doi:10.1016/S0254-0584(02)00209-2

    Google Scholar 

  • Zhang J, Yang Y, Xu B, Jiang F, Li J (2005) Shape-controlled synthesis of ZnO nano- and micro-structures. J Cryst Growth 280:509–515. doi:10.1016/j.jcrysgro.2005.04.003

    CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2006) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489. doi:10.1007/s11051-006-9150-1

    Google Scholar 

  • Zhenga K, Shena H, Lia J, Suna D, Chena G, Houb K, Lib C, Lei W (2008) The fabrication and properties of field emission display based on ZnO tetrapod-liked nanostructure. Vacuum 83:261–264. doi:10.1016/j.vacuum.2008.07.010

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Areti Tsiola at the Queens College (CUNY) Core Facilities for Bio-imaging, Cell and Molecular Biology for the use of the transmission electron microscope, and the Thermoscientific 2000 nano-drop instrument. The authors also thank Dr. Patrick Brock and Dr. Barbara Balestra at the Queens College (CUNY) Department of Geology for use of the scanning electron microscope. NS, SB, NN, and SF thank the Fordham University Summer Science Internship Program, and IB thanks the Fordham University Faculty Research Grant for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita A. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarker, N.H., Barnaby, S.N., Fath, K.R. et al. Biomimetic growth of gallic acid–ZnO hybrid assemblies and their applications. J Nanopart Res 14, 773 (2012). https://doi.org/10.1007/s11051-012-0773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0773-0

Keywords

Navigation