Skip to main content
Log in

The role of alumina nanoparticles in epoxy adhesives

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Both untreated and calcined fumed alumina nanoparticles were dispersed into an epoxy-based adhesive at various percentages. The glass transition temperature of the nanofilled adhesives increased up to an optimal filler loading and then decreased, probably due to concurrent and contrasting effects of chain blocking and reduction of the crosslinking degree. Tensile modulus, stress at break, and fracture toughness of bulk adhesive were positively affected by the presence of untreated alumina nanoparticles at an optimal filler content. Mechanical tests on single-lap aluminum bonded joints indicated that untreated alumina nanoparticles markedly improved both the shear strength and fatigue life of the bonded joints. In particular, the shear strength increased by about 60% for an optimal filler content of 1 vol.%, and an adhesive failure mechanism was evidenced for all the tested specimens. Concurrently, a relevant decrease of the equilibrium contact angle with water was observed for nanofilled bulk adhesives. In summary, alumina nanoparticles can effectively improve the mechanical performances of epoxy structural adhesives, both by increasing their mechanical properties and by enhancing the interfacial wettability with an aluminum substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams RD, Comyn J (2000) Joining using adhesives. Assem Autom 20:109–117

    Article  Google Scholar 

  • Akbari B, Bagheri R (2007) Deformation mechanism of epoxy/clay nanocomposite. Eur Polym J 43:782–788

    Article  CAS  Google Scholar 

  • Basara C, Yilmazer U, Bayram G (2005) Synthesis and characterization of epoxy based nanocomposites. J Appl Polym Sci 98:1081–1086

    Article  CAS  Google Scholar 

  • Bondioli F, Cannillo V, Fabbri E, Messori M (2006) Preparation and characterization of epoxy resins filled with submicron spherical zirconia particles. Polymer 51:794–798

    CAS  Google Scholar 

  • Bondioli F, Dorigato A, Fabbri P, Messori M, Pegoretti A (2008) High-density polyethylene reinforced with submicron titania particles. Polym Eng Sci 48:448–457

    Article  CAS  Google Scholar 

  • Bondioli F, Dorigato A, Fabbri P, Messori M, Pegoretti A (2009) Improving the creep stability of high-density polyethylene with acicular titania nanoparticles. J Appl Polym Sci 112:1045–1055

    Article  CAS  Google Scholar 

  • Dean D, Walker R, Theodore M, Hampton E, Nyairo E (2005) Chemorheology and properties of epoxy/layered silicate nanocomposites. Polymer 46:3014–3021

    Article  CAS  Google Scholar 

  • Della Volpe C, Maniglio D, Morra M, Siboni S (2002) The determination of a ‘stable-equilibrium’ contact angle on heterogeneous and rough surface. Colloids Surf A 206:47–67

    Article  CAS  Google Scholar 

  • Della Volpe C, Brugnara M, Maniglio D, Siboni S, Wangdu T (2006) About the possibility of experimentally measuring an equilibrium contact angle and its theoretical and practical consequences. In: Mittal KL (ed) Contact angle wettability and adhesion. VSP, Utrecht, pp 79–100

    Google Scholar 

  • Doering R, Nishi Y (2007) Handbook of semiconductor manufacturing technology. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Dorigato A, Pegoretti A (2010) Tensile creep behaviour of poly(methylpentene)-silica nanocomposites. Polym Int 59:719–724

    CAS  Google Scholar 

  • Dorigato A, Pegoretti A, Fambri L, Slouf M, Kolarik J (2010a) Cycloolefin copolymer/fumed silica nanocomposites. J Appl Polym Sci. doi:10.1002/app.32988

  • Dorigato A, Morandi S, Pegoretti A (2010b) Morphological and thermo-mechanical characterization of epoxy-clay nanocomposites. In: ETDCM9 - 9th seminar on experimental techniques and design in composite materials 2009. Vicenza, Italy

  • Dorigato A, Pegoretti A, Kolarik J (2010c) Nonlinear tensile creep of linear low density polyethylene/fumed silica nanocomposites: time-strain superposition and creep prediction. Polym Compos 31:1947–1955

    Article  CAS  Google Scholar 

  • Dorigato A, Pegoretti A, Bondioli F, Messori M (2010d) Improving epoxy adhesives with zirconia nanoparticles. Compos Interfaces (in press)

  • Dorigato A, Pegoretti A, Penati A (2010e) Linear low-density polyethylene/silica micro- and nanocomposites: dynamic rheological measurements and modelling. Express Polym Lett 4(2):115–129

    Article  CAS  Google Scholar 

  • Goglio L, Rossetto M (2010) Stress intensity factor in bonded joints: influence of the geometry. Int J Adhes Adhes 30:313–321

    Article  CAS  Google Scholar 

  • Groth HL (1988) Stress singularity and fracture at interface corners in bonded joints. Int J Adhes Adhes 8:107–113

    Article  CAS  Google Scholar 

  • Isik I, Yilmazer U, Bayram G (2003) Impact modified epoxy/montmorillonite nanocomposites: synthesis and characterization. Polymer 44:6371–6377

    Article  CAS  Google Scholar 

  • Jia QM, Zheng M, Xu CZ, Chen HX (2006) The mechanical properties and tribological behavior of epoxy resin composites modified by different shape nanofillers. Polym Adv Technol 17:168–173

    Article  CAS  Google Scholar 

  • Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle modified epoxy polymers. Polymer 48:530–541

    Article  CAS  Google Scholar 

  • Kim JK, Hu C, Woo RSC, Sham ML (2005) Moisture barrier characteristics of organoclay–epoxy nanocomposites. Compos Sci Technol 65:805–813

    Article  CAS  Google Scholar 

  • Lazzarin P, Quaresimin M, Ferro P (2002) A two-term stress function approach to evaluate stress distributions in bonded joints of different geometries. J Strain Anal Eng Des 37:385–398

    Article  Google Scholar 

  • Lin JC, Chang L, Nien MH, Ho HL (2006) Mechanical behaviour of various nanoparticle filled composites at low velocity impact. Compos Struct 74:30–36

    Article  Google Scholar 

  • Liu W, Hoa SV, Pugh M (2005) Fracture toughness and water uptake of high-performance epoxy/nanoclay nanocomposites. Compos Sci Technol 65:2364–2373

    Article  CAS  Google Scholar 

  • Medina R, Haupert F, Schlarb AK (2008) Improvement of tensile properties and toughness of an epoxy resin by nanozirconium dioxide reinforcement. J Mater Sci 43:3245–3252

    Article  CAS  Google Scholar 

  • Mohan TP, Kumar MR, Velmurugan R (2006) Mechanical and barrier properties of epoxy polymer filled with nanolayered silicate clay particles. J Mater Sci 41:2929–2937

    Article  CAS  Google Scholar 

  • Park SW, Lee DG (2009) Strength of double lap joints bonded with carbon black reinforced adhesive under cryogenic environment. J Adhes Sci Technol 23:619–638

    Article  Google Scholar 

  • Patel S, Bandyopadhyay A, Ganguly A, Bhowmick AK (2006) Synthesis and properties of nanocomposite adhesives. J Adhes Sci Technol 20:371–385

    Article  CAS  Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    Article  CAS  Google Scholar 

  • Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  • Pegoretti A, Dorigato A, Brugnara M, Penati A (2008) Contact angle measurements as a tool to investigate the filler–matrix interactions in polyurethane–clay nanocomposites from blocked prepolymer. Eur Polym J 44:1662–1672

    Article  CAS  Google Scholar 

  • Pirondi A, Moroni F (2009) An investigation of fatigue failure prediction of adhesively bonded metal/metal joints. Int J Adhes Adhes 29:796–805

    Article  CAS  Google Scholar 

  • Prolongo SG, Gude MR, Sanchez J, Urena A (2009) Nanoreinforced epoxy adhesives for aerospace industry. J Adhes 85:180–199

    Article  CAS  Google Scholar 

  • Quaresimin M, Ricotta M (2006) Fatigue behaviour and damage evolution of single lap bonded joints in composite material. Compos Sci Technol 66:176–187

    Article  CAS  Google Scholar 

  • Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L (2005) Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 46:10506–10516

    Article  CAS  Google Scholar 

  • Sawa T, Liu J, Nakano K, Tanaka J (2000) A two-dimensional stress analysis of single-lap adhesive joints of dissimilar adherends subjected to tensile loads. J Adhes Sci Technol 14:43–66

    Article  CAS  Google Scholar 

  • Varghese S, Gatos KG, Apostolov AA, Karger-Kocsis J (2004) Morphology and mechanical properties of layered silicate reinforced natural and polyurethane rubber blends produced by latex compounding. J Appl Polym Sci 92:543–551

    Article  CAS  Google Scholar 

  • Volkersen O (1938) Die nietkraftverteilung in zugbeanspruchten nietverbindungen mit konstanten laschenquerschnitten. Luftfahrtforschung 15:41–47

    Google Scholar 

  • Xi X, Yu C, Lin W (2009) Investigation of nanographite/polyurethane electroconductive adhesives: preparation and characterization. J Adhes Sci Technol 23:1939–1951

    Article  CAS  Google Scholar 

  • Yasmin A, Abot JL, Daniel IM (2003) Processing of clay/epoxy nanocomposites by shear mixing. Scr Mater 49:81–86

    Article  CAS  Google Scholar 

  • Yu S, Tong MN, Critchlow G (2009) Wedge test of carbon nanotube reinforced epoxy adhesive joints. J Appl Polym Sci 111:2957–2962

    Article  CAS  Google Scholar 

  • Zhang J, Jiang DD, Wilkie CA (2005) Fire properties of styrenic polymer–clay nanocomposites based on oligomerically-modified clay. Polym Degrad Stab 91:358–366

    Article  Google Scholar 

  • Zunjarrao SC, Sriraman R, Singh RP (2006) Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy–clay nanocomposites. J Mater Sci 41:2219–2228

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ms. Fabiola Telch is gratefully acknowledged for her support to the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Dorigato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorigato, A., Pegoretti, A. The role of alumina nanoparticles in epoxy adhesives. J Nanopart Res 13, 2429–2441 (2011). https://doi.org/10.1007/s11051-010-0130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0130-0

Keywords

Navigation