Skip to main content
Log in

Investigation on properties of P((MAA-co-DMAEMA)-g-EG) polyampholyte nanogels

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

P((MAA-co-DMAEMA)-g-EG) polyampholyte nanogels (PANGs) were prepared by distillation-dispersion copolymerization of poly(ethylene glycol) methyl ether methacrylate (MPEGMA), N,N-dimethylaminoethyl methacrylate (DMAEMA), and methacrylic acid (MAA) using acetonitrile (AN) as dispersion medium. The results of FTIR spectra indicate that the composition of P((MAA-co-DMAEMA)-g-EG) PANGs is consistent with the designed structure. The results of TEM and laser particle size analyzer (LPSA) show that P((MAA-co-DMAEMA)-g-EG) PANGs present spherical morphology and a bimodal size distribution after and before swelling. P((MAA-co-DMAEMA)-g-EG) PANGs have typically amphoteric characters responding to pH, whose isoelectric point (IEP) increases with decreasing the ratio of MAA/DMAEMA and equilibrium swelling degree (ESD) is greater than that at IEP when the pH value is distant from IEP. P((MAA-co-DMAEMA)-g-EG) PANGs also represent ionic strength sensitivity. Using the water-soluble chitosan (CS, Mn = 5 kDa) as model drug, in vitro release indicates that CS can be effectively incorporated into PANGs and the release rate of CS at pH 1.89 is an order of magnitude greater than that at pH 8.36. P((MAA-co-DMAEMA)-g-EG) PANGs may be useful in biomedicine, especially in oral drug delivery of biomacromolecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bai F, Yang XL, Huang WQ (2004) Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation-precipitation polymerization. Macromolecules 37:9746–9752

    Article  CAS  Google Scholar 

  • Bai F, Yang XL, Zhao YZ et al (2005) Synthesis of core-shell microspheres with active hydroxyl groups by two-stage precipitation polymerization. Polym Int 54:168–174

    Article  CAS  Google Scholar 

  • Bai F, Yang XL, Huang WQ (2006) Narrow-disperse or monodisperse crosslinked and functional core-shell polymer particles prepared by two-stage precipitation polymerization. J Appl Polym Sci 100:1776–1784

    Article  CAS  Google Scholar 

  • Bharali DJ, Sahoo SK, Mozumdar S et al (2003) Cross-linked polyvinylpyrrolidone nanoparticles: a potential carrier for hydrophilic drugs. J Colloid Interface Sci 258:415–423

    Article  PubMed  CAS  Google Scholar 

  • Bütün V, Armes S, Billingham N (2001) Synthesis of aqueous solution properties of near-monodispersion tertiary amine methacrylate homopolymers and diblock copolymers. Polymer 42:5993–6001

    Article  Google Scholar 

  • Capek I (2000) Surface active properties of polyoxyethylene macromonomers and their role in radical polymerization in disperse systems. Adv Colloid Interface Sci 88:295–357

    Article  PubMed  ADS  CAS  Google Scholar 

  • Chen LY, Tian ZG, Du YM (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25:3725–3732

    Article  PubMed  CAS  Google Scholar 

  • Choi C, Chae SY, Nah J-W (2006) Thermosensitive poly(N-isopropylacrylamide)-b-poly(3-caprolactone) nanoparticles for efficient drug delivery system. Polymer 47:4571–4580

    Article  CAS  Google Scholar 

  • Das M, Kumacheva E (2006) From polyelectrolyte to polyampholyte microgels: comparison of swelling properties. Colloid Polym Sci 284:1073–1084

    Article  CAS  Google Scholar 

  • Deng LD, He XH, Li AG et al (2007) Preparation of poly(MAA-g-EG) hydrogel nanoparticles by a thermally-initiated free radical dispersion polymerization. J Nanosci Nanotechnol 7(2):626–633

    PubMed  CAS  Google Scholar 

  • Ferruti P, Bianchi S, Ranucci E et al (2005) Novel poly (amido-amine)-based hydrogels as scaffolds for tissue engineering. Macromol Biosci 5:613–622

    Article  PubMed  CAS  Google Scholar 

  • Ferruti P, Ranucci E, Bianchi S et al (2006) Novel polyamidoamine-based hydrogel with an innovative molecular architecture as a Co2+-, Ni2+-, and Cu2+-sorbing material: cyclovoltammetry and extended X-ray absorption fine structure studies. J Polym Sci Part A: Polym Chem 44:2316–2327

    Article  CAS  Google Scholar 

  • Gu ZY, Patterson G, Cao R et al (2003) Self-assembled supramolecular microgels: fractal structure and aggregation mechanism. J Polym Sci: Part B: Polym Phys 41:3037–3046

    Article  CAS  Google Scholar 

  • Guo BL, Yuan JF, Yao L et al (2007) Preparation and release profiles of pH/temperature responsive carboxymethyl chitosan/P(2-(dimethylamino) ethyl methacrylate) semi-IPN amphoteric hydrogel. Colloid Polym Sci 285:665–671

    Article  CAS  Google Scholar 

  • Herrero-Vanrell R, Rincón AC, Alonso M et al (2005) Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. J Control Release 102:113–122

    Article  PubMed  CAS  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliver Rev 43:3–12

    Article  Google Scholar 

  • Huang G, Gao J, Hu Z et al (2004) Controlled drug release from hydrogel nanoparticle networks. J Control Release 94:303–311

    Article  PubMed  CAS  Google Scholar 

  • Jana SS, Bharali DJ, Mani P et al (2002) Targeted cytosolic delivery of hydrogel nanoparticles into HepG2 cells through engineered Sendai viral envelopes. FEBS Letters 515:184–188

    Article  PubMed  CAS  Google Scholar 

  • Kim KH, Kim J, Jo WH (2005) Preparation of hydrogel nanoparticles by atom transfer radical polymerization of N-isopropylacrylamide in aqueous media using PEG macro-initiator. Polymer 46:2836–2840

    Article  CAS  Google Scholar 

  • Kokufuta E, Ogawa K, Doi R et al (2007) Geometrical characteristics of polyelectrolyte nanogel particles and their polyelectrolyte complexes studied by dynamic and static light scattering. J Phys Chem B 111:8634–8640

    Article  PubMed  CAS  Google Scholar 

  • Lemieux P, Vinogradov SV, Gebhart CL et al (2000) Block and graft copolymers and nanogel co-polymer networks for DNA delivery into cell. J Drug Target 8:91–105

    Article  PubMed  CAS  Google Scholar 

  • Leobandung W, Ichikawa H, Fukumori Y et al (2002) Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide. J Control Release 80:357–363

    Article  PubMed  CAS  Google Scholar 

  • Liu CG, Chen XG, Park HJ (2005) Self-assembled nanoparticles based on linoleic-acid modified chitosan: stability and adsorption of trypsin. Carbohyd Polym 62:293–298

    Article  CAS  Google Scholar 

  • Lungwitz U, Breunig M, Blunk T et al (2005) Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 60:247–266

    Article  PubMed  CAS  Google Scholar 

  • Morishita M, Lowman AM, Takayama K et al (2002) Elucidation of the mechanism of incorporation of insulin in controlled release systems based on complexation polymers. J Control Release 81:25–32

    Article  PubMed  CAS  Google Scholar 

  • Na K, Lee KH, Bae YH (2004) pH-sensitivity and pH-dependent interior structural change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo-sulfonamide conjugate. J Control Release 97:513–525

    PubMed  CAS  Google Scholar 

  • Ogawa K, Nakayama A, Kokufuta E (2003) Preparation and characterization of thermosensitive polyampholyte nanogels. Langmuir 19:3178–3184

    Article  CAS  Google Scholar 

  • Ogawa K, Nakayama A, Kokufuta E (2003) Electrophoretic behavior of ampholytic polymers and nanogels. J Phys Chem B 107:8223–8227

    Article  CAS  Google Scholar 

  • Ogris M, Walker G, Blessing T et al (2003) Tumor-targeted gene therapy: strategies for the preparation of ligand–polyethylene glycol-polyethylenimine/DNA complexes. J Control Release 91:173–181

    Article  PubMed  CAS  Google Scholar 

  • Paneva D, Mespouille L, Manolova N et al (2006) Comprehensive study on the formation of polyelectrolyte complexes from (quaternized) poly[2-(dimethylamino)ethyl methacrylate] and poly(2-acrylamido-2-methylpropane sodium sulfonate). J Polym Sci: Part A: Polym Chem 44:5468–5479

    Article  CAS  Google Scholar 

  • Peppas NA, Bures P, Leobandung W et al (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 53:321–339

    Article  CAS  Google Scholar 

  • Robinson DN, Peppas NA (2002) Preparation and characterization of pH-responsive poly(methacrylic acid-g-ethylene glycol) nanospheres. Macromolecules 35:3668–3674

    Article  CAS  Google Scholar 

  • Rosiak JM, Janik I, Kadlubowski S et al (2003) Nano-, micro- and macroscopic hydrogels synthesized by radiation techinique. Nucl Instrum Meth B 208:325–330

    Article  ADS  CAS  Google Scholar 

  • Sahiner N, Alb AM, Graves R (2007) Core-shell nanohydrogel structures as tunable delivery systems. Polymer 48:704–711

    Article  CAS  Google Scholar 

  • Sahoo SK, De TK, Ghosh PK et al (1998) pH- and thermo-sensitive hydrogel nanoparticles. J Colloid Interface Sci 206:361–368

    Article  PubMed  CAS  Google Scholar 

  • Shin Y, Chang JH, Liu J et al (2001) Hybrid nanogels for sustainable positive thermosensitive drug release. J Control Release 73:1–6

    Article  PubMed  CAS  Google Scholar 

  • Tan BH, Ravi P, Tam KC (2006) Synthesis and characterization of novel pH-responsive polyampholyte microgels. Macromol Rapid Commun 27:522–528

    Article  CAS  Google Scholar 

  • Tan BH, Ravi P, Tan LN, Tam KC (2007) Synthesis and aqueous solution properties of sterically stabilized pH-responsive polyampholyte microgels. J Colloid Interface Sci 309:453–463

    Article  PubMed  CAS  Google Scholar 

  • Tobia H, Kumagai M, Aoyagi N (2000) Microgel formation in emulsion polymerization. Polymer 41:481–487

    Article  Google Scholar 

  • Torres-Lugo M, Peppas NA (2002) Preparation and characterization of P(MAA-g-EG) nanospheres for protein delivery applications. J Nanopart Res 4:73–81

    Article  CAS  Google Scholar 

  • Ulański P, Janok I, Rosiak JM (1998) Radiation formation of polymeric nanogels. Radiat Phys Chem 52:289–294

    Article  Google Scholar 

  • Ulański P, Rosiak JM (1999) The use of radiation technique in the synthesis of polymeric nanogels. Nucl Instrum Meth B 151:356–360

    Article  ADS  Google Scholar 

  • Ulański P, Kadłubowski S, Rosiak JM (2002) Synthesis of poly(acrylic acid) nanogels by preparative pulse radiolysis. Radiat Phys Chem 63:533–537

    Article  ADS  Google Scholar 

  • Valencia J, Piérola IF (2007) Interpretation of the polyelectrolyte and antipolyelectrolyte effects of poly(N-vinylimidazoleco-sodium styrenesulfonate) hydrogels. J Polym Sci Part B: Polym Phys 45:1683–1693

    Article  CAS  Google Scholar 

  • Vinogradov SV, Bronich TK, Kabanov AV (1998) Self-assembly of polyamine-poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides. Bioconjug Chem 9:805–812

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov SV, Batrakova E, Kabanov AV (1999) Poly(ethylene glycol)-polyethylenimine nanogel particles: novel drug delivery systems for antisense oligonucleotides. Colloids Surf B 16:291–304

    Article  CAS  Google Scholar 

  • Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliver Rev 54:135–147

    Article  CAS  Google Scholar 

  • Wakebayashi D, Nishiyama N, Itaka K et al (2004) Polyion complex micelles of pDNA with acetal-poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) block copolymer as the gene carrier system: physicochemical properties of micelles relevant to gene transfection efficacy. Biomacromolecules 5:2128–2136

    Article  PubMed  CAS  Google Scholar 

  • Xu SM, Wu RL, Huang XJ et al (2006) Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly (acrylic acid–codiallyldimethylammonium chloride). J Appl Polym Sci 102:986–991

    Article  CAS  Google Scholar 

  • Yao FL, Chen W, Liu C et al (2003) A novel amphoteric, pH-sensitive, biodegradable poly [chitosan-g-(L-lactic-co-citric) acid] hydrogel. J Appl Polym Sci 89:3850–3854

    Article  CAS  Google Scholar 

  • Zhai ML, Chen YF, Yi M et al (2004) Swelling behaviour of a new kind of polyampholyte hydrogel composed of dimethylaminoethyl methacrylate and acrylic acid. Polym Int 53:33–36

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work had been supported by National Natural Science Foundation of China (grant number 30772007), Program for New Century Excellent Talents in University of China and Programme of Introducing Talents of Discipline to Universities (No: B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjie Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, L., Zhai, Y., Guo, S. et al. Investigation on properties of P((MAA-co-DMAEMA)-g-EG) polyampholyte nanogels. J Nanopart Res 11, 365–374 (2009). https://doi.org/10.1007/s11051-008-9391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9391-2

Keywords

Navigation