Skip to main content
Log in

Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The development of miniaturized chemical sensors is an increasingly active area of research. Such devices, particularly when they feature low mass and low power budgets, can impact a broad range of applications including industrial process monitoring, building security and extraterrestrial exploration. Nanostructured materials, because of their high surface area, can provide critical enhancements in the performance of chemical microsensors. We have worked to integrate nanomaterial films with MEMS (microelectromechanical systems) microhotplate platforms developed at the National Institute of Standards and Technology in order to gain the benefits of both the materials and the platforms in high-performance chemical sensor arrays. Here, we describe our success in overcoming the challenges of integration and the benefits that we have achieved with regard to the critical sensor performance characteristics of sensor response, speed, stability and selectivity. Nanostructured metal oxide sensing films were locally deposited onto microhotplates via chemical vapor deposition and microcapillary pipetting, and conductive polymer nanoparticle films were deposited via electrophoretic patterning. All films were characterized by scanning electron microscopy and evaluated as conductometric gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afridi M., Hefner A., Berning D., Ellenwood C., Varma A., Jacob B., Semancik S., (2004). MEMS-based embedded sensor virtual components for system-on-a-chip (SoC). Solid-State Electron. 48: 1777–1781

    Article  CAS  Google Scholar 

  • Barsan N., Weimar U., (2002). Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 7: 143–167

    Article  Google Scholar 

  • Benkstein K.D., Kopidakis N., van de Lagemaat J., Frank A.J., (2003). Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells. J. Phys. Chem. B 107: 7759–7767

    Article  CAS  Google Scholar 

  • Benkstein K.D., Montgomery C.B., Vaudin M.D., Semancik S., (2005a). The Development and Evaluation of TiO2 Nanoparticle Films for Conductometric Gas Sensing on MEMS Microhotplate Platforms. Mater. Res. Soc. Symp. Proc. 828: A.7.1–A.7.4

    Google Scholar 

  • Benkstein K.D. & S. Semancik, 2005. Mesoporous nanoparticle TiO2 thin films for conductometric gas sensing on microhotplate platforms. Sens. Actuators, B (In press)

  • Boger Z., Meier D.C., Cavicchi R.E., Semancik S., (2003a). Rapid Identification of Chemical Warfare Agents by Artificial Neural Network Pruning of Temperature-Programmed Microsensor Databases. Sensor Lett. 1: 86–92

    Article  CAS  Google Scholar 

  • Boger Z., R.E. Cavicchi & S. Semancik, 2003b. Analysis of conductometric micro-sensor responses in a 36-sensor array by artificial neural networks modeling. Olfaction and Electronic Nose (Arcane Editrice S.r.l., Rome), 135–140

  • Caruso F., Caruso R.A., Mohwal H., (1998). Nanoengineering of Inorganic Hybrid Hollow Spheres by Colloidal Templating. Science 282(5391): 1111–1114

    Article  CAS  Google Scholar 

  • Caruso F., Lichtenfel H., Giersi M., Mohwal H., (1998). Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles. J. Am. Chem. Soc. 120: 8523–8524

    Article  CAS  Google Scholar 

  • Cavicchi R.E., Walton R.M., Aquino-Class M., Allen J.D., Panchapakesan B., (2001). Spin-on nanoparticle tin oxide for microhotplate gas sensors. Sens. Actuators, B 77: 145–154

    Article  Google Scholar 

  • Cavicchi R.E., Semancik S., DiMeo Jr F., Taylor C.J., (2003). Use of Microhotplates in the Controlled Growth and Characterization of Metal Oxides for Chemical Sensing. J. Electroceram. 9: 155–164

    Article  Google Scholar 

  • Comini E., Guidi V., Frigeri C., Ricco G., Sberveglieri G., (2001). CO sensing properties of titanium and iron oxide nanosized thin films. Sens. Actuators, B 77: 16–21

    Article  Google Scholar 

  • Garcia-Belmonte G., Kytin V., Dittrich T., Bisquert J., (2003). Effect of humidity on the ac conductivity of nanoporous TiO2. J. Appl. Phys. 94(8): 5261–5264

    Article  CAS  Google Scholar 

  • Hoel A., Ederth J., Kopniczky J., Heszler P., Kish L.B., Olsson E., Granqvist C.G., (2002). Conduction invasion noise in nanoparticle WO3/Au thin-film devices for gas sensing application. Smart Mater. Struct. 11: 640–644

    Article  CAS  Google Scholar 

  • Huber B., Gnaser H., Ziegler C., (2003). Characterization of nanocrystalline anatase TiO2 thin films. Anal. Bioanal. Chem. 375(7): 917–923

    CAS  Google Scholar 

  • Izu N., Shin W., Murayama N., (2003). Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder. Sensors and Actuators B 93: 449–453

    Article  Google Scholar 

  • James D., Scott S. M., Ali Z., O’Hare W.T., (2005). Chemical Sensors for Electronic Nose Systems. Microchim. Acta 149(1–2): 1–17

    Article  CAS  Google Scholar 

  • Kang M.G., Park N.-G., Park Y.J., Ryu K.S., Chang S.H., (2003). Manufacturing method for transparent electric windows using dye-sensitized TiO2 solar cells. Sol. Energ. Mat. Sol. C. 75(3–4): 475–479

    Article  CAS  Google Scholar 

  • Li G., Josowicz M., Janata J., (2002). Electrochemical assembly of conducting polymer films on an insulating surface. Electrochem. Solid-State Lett. 5(4): D5–D8

    Article  CAS  Google Scholar 

  • Li G., Martinez C., Semancik S., Smith J.A., Josowicz M., Janata J., (2004). Effect of Morphology on the Response of Polyaniline-based Conductometric Gas Sensors: Nanofibers vs. Thin Films. Electrochem. Solid-State Lett. 7(10): H44–H47

    Article  CAS  Google Scholar 

  • Li, G., C. Martinez, Semancik S., (2005). Controlled electrophoretic patterning of polyaniline from a colloidal suspension. J. Am. Chem. Soc. 127(13): 4903–4909

    Article  CAS  Google Scholar 

  • Martinez C. J., B. Hockey, C.B. Montgomery & S. Semancik, 2005. Porous tin oxide nanostructured microspheres for sensor applications. Langmuir 21(17), 7937–7944

    Google Scholar 

  • Nartowski A.M., Atkinson A., (2003). Sol-Gel Synthesis of Sub-Micron Titanium-Doped Chromia Powders for Gas Sensing. J. Sol-Gel Sci. Tech. 26(1–3): 793–797

    Article  CAS  Google Scholar 

  • Panchapakesan B., DeVoe D.L., Widmaier M.R., Cavicchi R., Semancik S., (2001). Nanoparticle engineering and control of tin oxide microstructures for chemical microsensor applications. Nanotechnology 12: 336–349

    Article  CAS  Google Scholar 

  • Park C.O., Akbar S.A., (2003). Ceramics for chemical sensing. J. Mat. Sci. 38: 4611–4637

    Article  CAS  Google Scholar 

  • Persaud K., Dodd G., (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881): 352–355

    Article  CAS  Google Scholar 

  • Ruiz A.M., Dezanneau G., Arbiol J., Cornet A., Morante J.R., (2004). Insights into the Structural and Chemical Modifications of Nb Additive on TiO2 Nanoparticles. Chem. Mater. 16: 862–871

    Article  CAS  Google Scholar 

  • Safonova O., Bezverkhy I., Fabrichnyi P., Rumyantseva M., Gaskov A., (2002). Mechanism of sensing CO in nitrogen by nanocrystalline SnO2 and SnO2(Pd) studied by Mössbauer spectroscopy and conductance measurements. J. Mater. Chem. 12(4): 1174–1178

    Article  CAS  Google Scholar 

  • Savage N.O., Roberson S., Gillen G., Tarlov M.J., Semancik S., (2003). Thermolithographic Patterning of Sol-Gel Metal Oxides on Micro Hot Plate Sensing Arrays Using Organosilanes. Anal. Chem. 75: 4360–4367

    Article  CAS  Google Scholar 

  • Semancik S., Cavicchi R.E., (1998). Kinetically Controlled Chemical Sensing Using Micromachined Structures. Acc. Chem. Res. 31: 279–287

    Article  CAS  Google Scholar 

  • Semancik, S., Cavicchi R.E., Wheeler M.C., Tiffany J.E., Poirier G.E., Walton R.M., Suehle J.S., Panchapakesan B., DeVoe D.L., (2001). Microhotplate platforms for chemical sensor research. Sens. Actuators, B 77: 579–591

    Article  Google Scholar 

  • Semancik S., (2003). In: Xiang X.-D. & Takeuchi I. eds. Combinatorial Materials Synthesis. Marcel Dekker, Inc., New York, NY

  • Soulantica K., Erades L., Sauvan M., Senocq F., Maisonnat A., Chaudret B., (2003). Synthesis of Indium and Indium Oxide Nanoparticles from Indium Cyclopentadienyl Precursor and Their Application for Gas Sensing. Adv. Funct. Mater. 13(7): 553–557

    Article  CAS  Google Scholar 

  • Suehle J.S., Cavicchi R.E., Gaitan M., Semancik S., (1993). Tin Oxide Gas Sensor Fabricated Using CMOS Micro-Hotplates and In-Situ Processing. IEEE Electron Device Lett. 14(3): 118–120

    Article  CAS  Google Scholar 

  • Taylor C.J., Semancik S., (2002). Use of Microhotplate Arrays as Microdeposition Substrates for Materials Exploration. Chem. Mater. 14: 1671–1677

    Article  CAS  Google Scholar 

  • Traversa E., Di Vona M.L., Licoccia S., Sacerdoti M., Carotta M.C., Crema L., Martinelli G., (2001). Sol-Gel Processed TiO2-Based Nano-Sized Powders for Use in Thick-Film Gas Sensors for Atmospheric Pollutant Monitoring. J. Sol-Gel Sci. Tech. 22: 167–179

    Article  CAS  Google Scholar 

  • Wang S.-H., Chou T.-C., Liu C.-C., (2003). Nano-crystalline tungsten oxide NO2 sensor. Sensors and Actuators B 94: 343–351

    Article  Google Scholar 

  • Zaban A., Ferrere S., Sprague J., Gregg B.A., (1997). pH-Dependent Redox Potential Induced in a Sensitizing Dye by Adsorption onto TiO2. J. Phys. Chem. B 101: 55–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NASA Code R. We would like to thank Richard Cavicchi for useful discussions, Mike Carrier for device design work and Jim Melvin for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Semancik.

Additional information

The U.S. Government’s right to retain a non-exclusive royalty-free license in and to any copyright is acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benkstein, K.D., Martinez, C.J., Li, G. et al. Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance. J Nanopart Res 8, 809–822 (2006). https://doi.org/10.1007/s11051-005-9019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9019-8

Keywords

Navigation