Skip to main content

Advertisement

Log in

Effects of Itraconazole and Micafungin on Aspergillus fumigatus Biofilms

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Aspergillus fumigatus (A. fumigatus) is the most common airborne opportunistic fungal pathogen. Biofilm formation is one of the main pathogenic mechanisms of A. fumigatus. During the past decades, A. fumigatus azole resistance has become prevalent due to the medical and agricultural use of antifungal drugs and fungicides. Until now, the role of fungal biofilms in azole resistance of A. fumigatus remains unclear. In the present study, we compared biofilm drug susceptibility and biofilm formation under itraconazole of azole-resistant strains, sensitive strains, and standard strains, separately. The biofilm viability and matrix thickness at the early and the late stage were measured by XTT assay and Calcofluor white. Our results showed that the sessile minimum inhibitory concentration of itraconazole, which describing the inhibition of drugs on fungi sessile with biofilm, was much higher than the traditional minimal inhibitory concentration of itraconazole. Additionally, low concentrations of itraconazole inhibited biofilm formation of A. fumigatus strains. Notably, biofilm formation by azole-resistant strains could not be inhibited by high concentrations of itraconazole but could be effectively restrained by low concentrations of micafungin, revealing the efficacy of a cell-wall inhibitor to disrupt A. fumigatus biofilm formation. However, late-stage biofilms of both azole-resistant strains and standard strains were hard to disrupt using itraconazole. We found that itraconazole was effective to prevent A. fumigatus biofilm formation at the early stage. For the treatment of A. fumigatus biofilm, our findings suggest that an early-stage preventive strategy is preferred and micafungin is effective to control the azole-resistant strain infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdel Hameed AA, Yasser IH, Khoder IM. Indoor air quality during renovation actions: a case study. J Environ Monit JEM. 2004;6(9):740–4. https://doi.org/10.1039/b402995j.

    Article  CAS  PubMed  Google Scholar 

  2. Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999;12(2):310–50.

    Article  CAS  Google Scholar 

  3. Kousha M, Tadi R, Soubani AO. Pulmonary aspergillosis: a clinical review. Eur Respir Rev. 2011;20(121):156–74. https://doi.org/10.1183/09059180.00001011.

    Article  CAS  PubMed  Google Scholar 

  4. Cadena J, Thompson GR 3rd, Patterson TF. Invasive aspergillosis: current strategies for diagnosis and management. Infect Dis Clin North Am. 2016;30(1):125–42. https://doi.org/10.1016/j.idc.2015.10.015.

    Article  PubMed  Google Scholar 

  5. Latge JP, Chamilos G. Aspergillus fumigatus and aspergillosis in 2019. Clin Microbiol Rev. 2019. https://doi.org/10.1128/CMR.00140-18.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Patterson TF, Thompson GR 3rd, Denning DW, Fishman JA, Hadley S, Herbrecht R, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the infectious diseases society of America. Clin Infect Dis. 2016;63(4):e1–60. https://doi.org/10.1093/cid/ciw326.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rajendran R, Mowat E, Jones B, Williams C, Ramage G. Prior in vitro exposure to voriconazole confers resistance to amphotericin B in Aspergillus fumigatus biofilms. Int J Antimicrob Agents. 2015;46(3):342–5. https://doi.org/10.1016/j.ijantimicag.2015.03.006.

    Article  CAS  PubMed  Google Scholar 

  8. Rajendran R, Mowat E, McCulloch E, Lappin DF, Jones B, Lang S, et al. Azole resistance of aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrob Agents Chemother. 2011;55(5):2092–7. https://doi.org/10.1128/AAC.01189-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Desai JV, Mitchell AP, Andes DR. Fungal biofilms drug resistance and recurrent infection. Cold Spring Harbor Perspect Med. 2014. https://doi.org/10.1101/cshperspect.a019729.

    Article  Google Scholar 

  10. Brajtburg J, Powderly WG, Kobayashi GS, Medoff G. Amphotericin B: delivery systems. Antimicrob Agents Chemother. 1990;34(3):381–4. https://doi.org/10.1128/aac.34.3.381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davey ME, O’Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000;64(4):847–67.

    Article  CAS  Google Scholar 

  12. Loussert C, Schmitt C, Prevost MC, Balloy V, Fadel E, Philippe B, et al. In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol. 2010;12(3):405–10. https://doi.org/10.1111/j.1462-5822.2009.01409.x.

    Article  CAS  PubMed  Google Scholar 

  13. Kaur S, Singh S. Biofilm formation by Aspergillus fumigatus. Med Mycol. 2014;52(1):2–9. https://doi.org/10.3109/13693786.2013.819592.

    Article  CAS  PubMed  Google Scholar 

  14. Pierce CG, Uppuluri P, Tristan AR, Wormley FL Jr, Mowat E, Ramage G, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 2008;3(9):1494–500. https://doi.org/10.1038/nport.2008.141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Borghi E, Borgo F, Morace G. Fungal biofilms: update on resistance. Adv Exp Med Biol. 2016;931:37–47. https://doi.org/10.1007/5584_2016_7.

    Article  PubMed  Google Scholar 

  16. Liu M, Zeng R, Zhang L, Li D, Lv G, Shen Y, et al. Multiple cyp51A-based mechanisms identified in azole-resistant isolates of Aspergillus fumigatus from China. Antimicrob Agents Chemother. 2015;59(7):4321–5. https://doi.org/10.1128/AAC.00003-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mowat E, Butcher J, Lang S, Williams C, Ramage G. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J Med Microbiol. 2007;56(Pt 9):1205–12. https://doi.org/10.1099/jmm.0.47247-0.

    Article  CAS  PubMed  Google Scholar 

  18. Zeng R, Li M, Chen Q, Wang L, Zhan P, Wang C, et al. In vitro analyses of mild heat stress in combination with antifungal agents against Aspergillus fumigatus biofilm. Antimicrob Agents Chemother. 2014;58(3):1443–50. https://doi.org/10.1128/AAC.01007-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lass-Florl C, Nagl M, Speth C, Ulmer H, Dierich MP, Wurzner R. Studies of in vitro activities of voriconazole and itraconazole against Aspergillus hyphae using viability staining. Antimicrob Agents Chemother. 2001;45(1):124–8. https://doi.org/10.1128/AAC.45.1.124-128.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Monheit JE, Cowan DF, Moore DG. Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch Pathol Lab Med. 1984;108(8):616–8.

    CAS  PubMed  Google Scholar 

  21. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 2001;183(18):5385–94. https://doi.org/10.1128/jb.183.18.5385-5394.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ram AF, Klis FM. Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat Protoc. 2006;1(5):2253–6. https://doi.org/10.1038/nprot.2006.397.

    Article  CAS  PubMed  Google Scholar 

  23. Wiederhold NP, Pennick GJ, Dorsey SA, Furmaga W, Lewis JS 2nd, Patterson TF, et al. A reference laboratory experience of clinically achievable voriconazole, posaconazole, and itraconazole concentrations within the bloodstream and cerebral spinal fluid. Antimicrob Agents Chemother. 2014;58(1):424–31. https://doi.org/10.1128/AAC.01558-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lepesheva GI, Hargrove TY, Kleshchenko Y, Nes WD, Villalta F, Waterman MR. CYP51: a major drug target in the cytochrome P450 superfamily. Lipids. 2008;43(12):1117–25. https://doi.org/10.1007/s11745-008-3225-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu M, Zheng N, Li D, Zheng H, Zhang L, Ge H, et al. cyp51A-based mechanism of azole resistance in Aspergillus fumigatus: Illustration by a new 3D structural model of Aspergillus fumigatus CYP51A protein. Med Mycol. 2016;54(4):400–8. https://doi.org/10.1093/mmy/myv102.

    Article  CAS  PubMed  Google Scholar 

  26. Aguilar-Zapata D, Petraitiene R, Petraitis V. Echinocandins: the expanding Antifungal Armamentarium. Clin Infect Dis. 2015;61(Suppl 6):S604–11. https://doi.org/10.1093/cid/civ814.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Grant No. 81501726), the Fundamental Research Funds for the Central Universities (Grant No. 2019XK32007), the Natural Science Foundation of Jiangsu Province (Grant No. BK20150069), the Major national science and technology projects (Grant No. 2019ZX09721001-006-003), the National Natural Science Foundation of China (Grant No. 81502739).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weida Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Mariana Henriques

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zheng, H., Zeng, R. et al. Effects of Itraconazole and Micafungin on Aspergillus fumigatus Biofilms. Mycopathologia 186, 387–397 (2021). https://doi.org/10.1007/s11046-021-00534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-021-00534-4

Keywords

Navigation