Skip to main content

Advertisement

Log in

Large-Scale Land Development, Fugitive Dust, and Increased Coccidioidomycosis Incidence in the Antelope Valley of California, 1999–2014

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Ongoing large-scale land development for renewable energy projects in the Antelope Valley, located in the Western Mojave Desert, has been blamed for increased fugitive dust emissions and coccidioidomycosis incidence among the general public in recent years. Soil samples were collected at six sites that were destined for solar farm construction and were analyzed for the presence of the soil-borne fungal pathogen Coccidioides immitis which is endemic to many areas of central and southern California. We used a modified culture-independent nested PCR approach to identify the pathogen in all soil samples and also compared the sampling sites in regard to soil physical and chemical parameters, degree of disturbance, and vegetation. Our results indicated the presence of C. immitis at four of the six sites, predominantly in non-disturbed soils of the Pond-Oban complex, which are characterized by an elevated pH and salt bush communities, but also in grassland characterized by different soil parameters and covered with native and non-native annuals. Overall, we were able to detect the pathogen in 40% of the soil samples (n = 42). Incidence of coccidioidomycosis in the Antelope Valley was positively correlated with land use and particulate matter in the air (PM10) (Pearson correlation coefficient >0.5). With the predicted population growth and ongoing large-scale disturbance of soil in the Antelope Valley in coming years, incidence of coccidioidomycosis will likely further increase if policy makers and land developers continue to ignore the risk of grading land without implementing long-term dust mitigation plans in Environmental Impact Reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DG. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson JO, Thundiyil JG, Stolbach A. Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol. 2012;8:166–75.

    Article  CAS  PubMed  Google Scholar 

  3. Antelope Valley Dustbusters. Large area land managers guide to controlling windblown sand and dust. Antelope Valley Dustbusters Publication, pp. 1–29. http://www.kernair.org/Documents/Dust_Buster/Dustbusters%20Agricultural%20Guide%2010-25-10.pdf (2010). Accessed 2 Oct 2015.

  4. Baddock MC, Strong CL, Murray PS, McTainsh GH. Aeolian dust as a transport hazard. Atmos Environ. 2013;71:7–14.

    Article  CAS  Google Scholar 

  5. Baldwin BG. The Jepson desert manual: vascular plants of southeastern California. California: University of California Press; 2002.

    Google Scholar 

  6. Baptista-Rosas RC, Hinojosa A, Riquelme M. Ecological niche modeling of Coccidioides spp. in western North American deserts. Ann NY Acad Sci. 2007;1111:35–46.

    Article  PubMed  Google Scholar 

  7. Baptista-Rosas RC, Catalan-Dibene J, Romero-Olivares AL, Hinojosa A, Cavazos T, Riquelme M. Molecular detection of Coccidioides spp. from environmental samples in Baja California: linking Valley Fever to soil and climate conditions. Fung Ecol. 2012;5:177–90.

    Article  Google Scholar 

  8. Barker BM, Tabor JA, Shubitz LF, Perrill R, Orbach MJ. Detection and phylogenetic analysis of Coccidioides posadasii in Arizona soil samples. Fung Ecol. 2012;5:163–76.

    Article  Google Scholar 

  9. Binnicker MJ, Buckwalter SP, Eisberner JJ, Stewart RA, McCullough AE, Wohlfiel SL, Wengenack NL. Detection of Coccidioides species in clinical specimens by real-time PCR. J Clin Microbiol. 2007;45:173–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bruckner RJ. Renewable energy projects and fugitive dust control, agenda item no. 79-B, board motion of May 14th, 2013, Los Angeles County, Dept. of Regional Planning 2013, Dust Control. http://file.lacounty.gov/bc/q1_2014/cms1_208946.pdf (2013). Accessed 28 Nov 2015.

  11. Carlisle JE, Kane SL, Solan D, Joe JC. Support for solar energy: examining sense of place and utility-scale development in California. Energy Res Soc Sci. 2014;3:124–30.

    Article  Google Scholar 

  12. Correia AW, Pope CA III, Dockery DW, Wang Y, Ezzati M, Dominici F. The effect of air pollution control on life expectancy in the United States: an analysis of 545 US counties for the period 2000 to 2007. Epidemiology. 2013;24:23.

    Article  PubMed  PubMed Central  Google Scholar 

  13. County of Los Angeles Crop and Lifestock report 2014. http://file.lacounty.gov/acwm/cms1_232575.pdf. Accessed 8 Jan 2016.

  14. County of Los Angeles Department of Public Health. Public Health Reports 1999–2014. http://publichealth.lacounty.gov/phcommon/public/reports/rptspubdisplay.cfm?unit=all&ou=ph&prog=ph. Accessed 10 Oct 2015.

  15. County of Los Angeles Department of Regional Planning. Renewable energy. http://planning.lacounty.gov/energy. Accessed 9 Oct 2015.

  16. Crum NF, Lederman ER, Stafford CM, Parrish JS, Wallace MR. Coccidioidomycosis: a descriptive survey of a reemerging disease. Clinical characteristics and current controversies. Medicine. 2004;83:149–75.

    Article  PubMed  Google Scholar 

  17. Desert Renewable Energy Conservation Plan (DRECP). http://www.drecp.org/ (2012). Accessed 9 Oct 2015.

  18. Farber RJ, Cowherd C, Grelinger MA, Zink T, Cloud-Hughes M, Roberts E et al. Stifling the dust in the Antelope Valley. Paper 2010-A-612-AWMA, Antelope Valley Air Monitoring District. http://www.avaqmd.ca.gov/Modules/ShowDocument.aspx?documentid=2709 (2010). Accessed 17 Oct 2015.

  19. First Solar. AV Solar Ranch One Solar Power Plant Achieves 100 MW Milestone, First Solar. http://investor.firstsolar.com/releasedetail.cfm?ReleaseID=741974 (2013). Accessed 1 Oct 2015.

  20. Fisher FS, Bultman MW, Johnson SM, Pappagianis D, Zaborsky E. Coccidioides niches and habitat parameters in the southwestern United States. Ann NY Acad Sci. 2007;1111:47–72.

    Article  PubMed  Google Scholar 

  21. Flynn NM, Hoeprich PD, Kawachi MM, Lee KK, Lawrence RM, Goldstein EJ, et al. An unusual outbreak of windborne coccidioidomycosis. N Engl J Med. 1979;301:358–61.

    Article  CAS  PubMed  Google Scholar 

  22. Galgiani JN. Coccidioidomycosis: a regional disease of national importance: rethinking approaches for control. Ann Intern Med. 1999;130:293–300.

    Article  CAS  PubMed  Google Scholar 

  23. Galgiani JN, Ampel NM, Blair JE, Catanzaro A, Johnson RH, Stevens DA, Williams PL. Coccidioidomycosis. Clin Infect Dis. 2005;41:1217–23.

    Article  PubMed  Google Scholar 

  24. Germano DJ, Rathbun GB, Saslaw LR, Cypher BL, Cypher EA, Vredenburgh LM. The San Joaquin Desert of California: ecologically misunderstood and overlooked. Nat Areas J. 2011;1:138–47.

    Article  Google Scholar 

  25. Gibson JM, Brammer AS, Davidson CA, Folley T, Launay FJ, Thomsen JT. Burden of disease from outdoor air pollution. In: Environmental burden of disease assessment, pp. 73–108. Springer; 2013.

  26. Glikson M, Rutherford S, Simpson RW, Mitchell CA, Yago A. Microscopic and submicron components of atmospheric particulate matter during high asthma periods in Brisbane, Queensland, Australia. Atmos Environ. 1995;29:549–62.

    Article  CAS  Google Scholar 

  27. Gold DR, Mittleman MA. New insights into pollution and the cardiovascular system 2010 to 2012. Circulation. 2013;127:1903–13.

    Article  PubMed  Google Scholar 

  28. Goldstein EJ, Johnson RH, Einstein HE. Coccidioidal meningitis. Clin Infect Dis. 2006;42:103–7.

    Article  Google Scholar 

  29. Grantz DA, Vaughn DL, Farber RJ, Bong K, Vancuren R, Campbell R, Bainbridge D, Zink T. DustBusters reduce pollution, wind erosion: though difficult to achieve, revegetation is best way to stabilize soil. 1998. doi:10.3733/ca.v052n04p8 (Preprint).

    Google Scholar 

  30. Greater Antelope Valley Economic Alliance (GAVEA). Economic Round Table Report. http://socalleadingedge.org/wp-content/uploads/2014/12/2014gaveareport.pdf (2014). Accessed 28 Sept 2015.

  31. Greater Antelope Valley Economic Alliance (GAVEA). Economic Round Table Report. http://kedc.com/wp-content/uploads/2013/11/Greater-Antelope-Valley-Economic-Alliance-Round-Table-Report-2015.pdf. Accessed 30 April 2016.

  32. Greene DR, Koenig G, Fischer MC, Taylor JW. Soil isolation and molecular identification of Coccidioides immitis. Mycologia. 2000;92:406–10.

    Article  Google Scholar 

  33. Guevara RE, Motala T, Terashita D. The changing epidemiology of coccidioidomycosis in Los Angeles (LA) County, California, 1973–2011. PLoS ONE. 2015;10:e0136753. doi:10.1371/journal.pone.0136753.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Huckabone SE, Gulland FM, Johnson SM, Colegrove KM, Dodd EM, Pappagianis D, et al. Coccidioidomycosis and other systemic mycoses of marine mammals stranding along the Central California, USA coast: 1998–2012. J Wildl Dis. 2015;51:295–308.

    Article  PubMed  Google Scholar 

  35. Jibson RW, Harp EL, Schneider E, Hajjeh RA, Spiegel RA. An outbreak of coccidioidomycosis (valley fever) caused by landslides triggered by the 1994 Northridge, California, earthquake. Rev Eng Geol. 1998;2:53–62.

    Article  Google Scholar 

  36. Johnson L, Gaab EM, Sanchez J, Bui PQ, Nobile CJ, Hoyer KK, et al. Valley fever: danger lurking in a dust cloud. Microbes Infect. 2014;16:591–600.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Johnson SM, Carlson EL, Fisher FS, Pappagianis D. Demonstration of Coccidioides immitis and Coccidioides posadasii DNA in soil samples collected from Dinosaur National Monument, Utah. Med Mycol. 2014;52:610–7.

    Article  PubMed  Google Scholar 

  38. Kern County Department of Regional Planning. Renewable Energy. http://pcd.kerndsa.com/planning/renewable-energy. Accessed 4 Oct 2015.

  39. Kerns V. Scenes from the high desert: Julian Steward’s life and theory. Illinois: University of Illinois Press; 2008.

    Google Scholar 

  40. Kirkland TN, Fierer J. Coccidioidomycosis: a reemerging infectious disease. Emerg Infect Dis. 1996;2:192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lancaster N, Gillies JA. Design. Implementation & measurement of stage I pilot projects to reduce fugitive particulate emissions. 2011. Desert Research Institute (DRI), Reno, NV. Report submitted to the San Luis County Air Pollution Control District (SLOAPCD), California Department of Parks and Recreation and the County of San Luis Obispo. http://slocleanair.org/images/cms/upload/files/air/pdf/2011/PMStudy/OceanoDunesPilotProjectsReportFinal%203-15-11.pdf. Accessed 9 Jan 2016.  

  42. Laniado-Laborín R. Expanding understanding of epidemiology of coccidioidomycosis in the Western hemisphere. Ann NY Acad Sci. 2007;1111:19–34.

    Article  PubMed  Google Scholar 

  43. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26:223–7.

    Article  PubMed  Google Scholar 

  44. Lauer A, Baal JDH, Baal JCH, Verma M, Chen JM. Detection of Coccidioides immitis in Kern County, California, by multiplex PCR. Mycologia. 2012;104:62–9.

    Article  CAS  PubMed  Google Scholar 

  45. Lauer A, Talamantes J, Castañon-Olivares LR, Medina LJ, Baal JDH, Casimiro K, et al. Combining forces—the use of landsat TM satellite imagery, soil parameter information, and multiplex PCR to detect Coccidioides immitis growth sites in Kern County, California. PLoS ONE. 2014;. doi:10.1371/journal.pone.0111921.

    Google Scholar 

  46. Litvintseva AP, Marsden-Haug N, Hurst S, Hill H, Gade L, Driebe EM, et al. Valley Fever: Finding new places for an old disease: Coccidioides immitis found in Washington State soil associated with recent human infection. Clin Infect Dis. 2015;60:e1–3.

    Article  PubMed  Google Scholar 

  47. Lockeretz W. The lessons of the dust bowl: several decades before the current concern with environmental problems, dust storms ravaged the Great Plains, and the threat of more dust storms still hangs over us. Am Sci. 1978;66:560–9.

    Google Scholar 

  48. Los Angeles County, Report INT-GTR-315. Los Angeles County Crop and Livestock Report, pp. 113–5. http://file.lacounty.gov/acwm/cms1_232575.pdf (2014). Accessed 6 Nov 2015.

  49. MacKay P. Mojave desert wildflowers, 2nd: a field guide to wildflowers, trees, and shrubs of the Mojave desert, including the Mojave National Preserve, Death Valley National Park, and Joshua Tree National Park. Globe Pequot; 2013.

  50. Martin KJ, Rygiewicz PT. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 2005;5:28.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Miles SR, Goudey CB. Ecological subregions of California: section and subsection descriptions. PSW RP-005. USDA Forest Service, Redding, California. 1997.

  52. McRae P. The Mojave dust bowl of 2014—causes and solutions, quattro environmental. http://www.quattroenvironmental.com/the-mojave-dust-bowl-of-2014-causes-and-solutions/ (2014). Accessed 2 Oct 2015.

  53. Merriam CH. Geographic distribution of animals and plants in North America. U.S. Department of Agriculture. 1895.

  54. Morhardt S, Morhardt E. California desert flowers: an introduction to families, genera, and species. California: University of California Press; 2004.

    Google Scholar 

  55. Ochoa AG. Coccidioidomycosis in Mexico. In: Aiello L, editor. Proceedings of the symposium on coccidioidomycosis. Phoenix: University of Arizona Press; 1967.

  56. Pappagianis D, Einstein H. Tempest from Tehachapi takes toll or Coccidioides immitis conveyed aloft and afar. West J Med. 1978;29:527–30.

    Google Scholar 

  57. Pappagianis D. Epidemiology of coccidioidomycosis. In: Coccidioidomycosis. Springer; 1980. pp. 63–85.

  58. Raphael MN. The Santa Ana winds of California. Earth Interact. 2003;7:1–13.

    Article  Google Scholar 

  59. Rawls A. The ugly battle between rural residents and alternative energy mandates in California. Whats up with that? (WUWT). http://wattsupwiththat.com/2012/04/06/the-ugly-battle-between-rural-residents-and-alternative-energy-mandates-in-california/ (2012). Accessed 8 Nov 2015.

  60. Reheis MC. Owens (Dry) Lake, California: A Human-Induced Dust Problem. Impacts of Climate Change and Land Use in the Southwestern United States. U.S. Geological Survey. Retrieved 6 March 2010. http://geochange.er.usgs.gov/sw/impacts/geology/owens/ (2006). Accessed 28 Oct 2015.

  61. Renewable Energy Action Team (REAT). Best management practices and guidance manual, desert renewable energy projects. California Energy Commission. 2010;265.

  62. Reynolds RL, Yount JC, Reheis M, Goldstein H, Chavez P, Fulton R, Whitney J, Fuller C, Forester RM. Dust emission from wet and dry playas in the Mojave Desert, USA. Earth Surface Processes and Landforms. 2007;32:1811–27. http://www.energy.ca.gov/33by2020/documents/index.htm. Accessed 28 Oct 2015.

  63. Saubolle MA, McKellar PP, Sussland D. Epidemiologic, clinical, and diagnostic aspects of coccidioidomycosis. J Clin Microbiol. 2007;45:26–30.

    Article  CAS  PubMed  Google Scholar 

  64. Schmidt RT, Howard DH. Possibility of C. immitis infection of museum personnel. Publ. Health Rep. 1968;83:882.

    Article  CAS  Google Scholar 

  65. Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman JR, Jordar VS, Maiti R, Kodira CD, Neafsey DE, Zeng Q, Hung CY. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 2009;19:1722–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sheff KW, York ER, Driebe EM, Barker BM, Rounsley SD, Waddell VG, et al. Development of a rapid, cost-effective TaqMan Real-Time PCR Assay for identification and differentiation of Coccidioides immitis and Coccidioides posadasii. Med Mycol. 2010;8:466–9.

    Article  Google Scholar 

  67. Siegler K. Owens Valley salty as Los Angeles water battle flows into Court. National Public Radio (NPR), 3 Nov 2011. http://www.npr.org/2013/03/11/173463688/owens-valley-salty-as-los-angeles-water-battle-flows-into-court (2011). Accessed 10 Nov 2015.

  68. Slayback RD, Bunter WA, Dean LR. Restoring Mojave Desert farmland with native shrubs. In: Wild land shrub and arid land restoration symposium: proceedings, p. 113. DIANE Publishing; 1996.

  69. Smith CE, Beard RR, Rosenberger HG, Whiting EG. Effect of season and dust control on coccidioidomycosis. JAMA. 1946;132:833–8.

    Article  CAS  Google Scholar 

  70. Swatek FE. Ecology of Coccidioides immitis. Mycopath Mycol Appl. 1970;41:3–12.

    Article  CAS  Google Scholar 

  71. Takacs FJ, Tomkiewicz ZM, Merrill JP. Amphotericin B nephrotoxicity with irreversible renal failure. Ann Int Med. 1963;59:716–24.

    Article  CAS  PubMed  Google Scholar 

  72. Talamantes J, Behseta S, Zender CS. Statistical modeling of valley fever data in Kern County, California. Int J Biometeorol. 2007;51:307–13.

    Article  PubMed  Google Scholar 

  73. Team, Renewable Energy Action (The DRECP Independent Science Panel). Independent science review for the California desert renewable energy conservation plan (DRECP). http://www.drecp.org/documents/docs/independent_science_2012/2012-09-10_DRECP_Independent_Science_Panel_2012_Draft_Report.pdf (2012). Accessed 18 Sept 2015.

  74. Thompson GR III, Stevens DA, Clemons KV, Fierer J, Johnson RH, Sykes J, Rutherford G, Peterson M, Taylor JW, Chaturvedi V. Call for a California coccidioidomycosis consortium to face the top ten challenges posed by a recalcitrant regional disease. Mycopathologia. 2015;179:1–9.

    Article  PubMed  Google Scholar 

  75. Tolba MK. A harvest of dust? Environ Conserv. 1984;11:1–2.

    Article  Google Scholar 

  76. Vargas-Gastélum L, Romero-Olivares AL, Escalante AE, Rocha-Olivares A, Brizuela C, Riquelme M. Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing. FEMS Microbiol Ecol. 2015;91:5–44.

    Article  Google Scholar 

  77. Welsh HH Jr. Bioregions: an ecological and evolutionary perspective and a proposal for California. Calif Fish Game. 1994;80:97–124.

    Google Scholar 

  78. Wilken JA, Sondermeyer G, Shusterman D, McNary J, Vugia DJ, McDowell A, Borenstein P, Gilliss D, Ancock B, Prudhomme J, Gold D. Coccidioidomycosis among Workers Constructing Solar Power Farms, California, USA, 2011–2014. Emerg Infect Dis. 2015;21:1997.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62:316–22.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The project was supported by the California State University Research Council for Undergraduates Program (RCU) (D1072O). The authors also like to thank Paulina Le for analyzing the soil pH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Lauer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Coordinates of sampling sites, soil map information, and ecological site description. Supplementary material 1 (DOCX 22 kb)

Fig S1

Incidence of coccidioidomycosis (cases/100,000 people) in Los Angeles County and in 3 different Service Planning Areas (SPAs), Antelope Valley Area, San Fernando Area and San Gabriel Area between 2000 and 2014. Supplementary material 2 (TIFF 774 kb)

Fig S2

Overview of individual sampling spots where C. immitis was detected. A Soil sampling spot 6.1, with spotty distribution of dried Lasthenia californica, Erodium cicutarium, and a dead salt bush in the background. B Soil sampling spot 6.2, close to A. polycarpa. C Soil sampling spot 6.3, close to Ericameria nauseosa. D Soil sampling spot 6.5 with no vegetation, but visible salt deposits. E Soil sampling spot 6.4, with the same plant coverage as site 6.1 (A), where the pathogen could not be detected (included for comparison of vegetation cover). F Soil sampling spot 2.6 showing plenty of dried Lasthenia californica among other annuals. G Soil sampling location 3.1 showing a young Salsola tragus and dried Lasthenia californica among other annuals. H Soil sampling spot 3.5 showing small quartz particles on the surface, as well as drought resistant annuals including seedlings of Salsola tragus. No photo was taken at sampling spot 2A.1, but the vegetation was the same as documented for 2.6. Supplementary material 3 (TIFF 6992 kb)

Fig S3

Variation of selected soil parameters in the larger sampling area (within the square). Numbered white circles mark individual sampling sites. C. immitis was detected in soil samples from sites 2, 3, and 6. A Erodibility index as tons per acre per year: 48 (light orange), 56 (yellow), 86 (light yellow), 134 (light green), 250 (blue). B pH: 9.1 (very dark blue), 8.5–9 (dark blue), 7.9–8.2 (blue), 7.4–7.6 (turquoise), 6.7–7.3 (light green). C Soil map units: Pond-Oban complex (turquoise); Pond loam and Sunrise fine loamy sand (red); Sunrise sandy loam, Rosamond fine sandy loam, Ramona coarse sandy loam [5–12% slopes], and Gravel pits (pink); Tray loam [saline-alkali], Greenfield sandy loam [5–9% slopes], Hanford sandy loam [2–9% slopes], Rosamond loam [saline-alkali], Mohave coarse sandy loam [2–5% slopes], Hanford coarse sandy loam [0–9% slopes], and Sunrise loam (brown and kaki); Tray sandy loam [saline-alkali], Ramona coarse sandy loam [2–5% slopes], Vista coarse sandy loam [15–30% slopes, eroded] (blue), Cajon loamy sand [0–2% slopes], Hanford coarse sandy loam [0–2% slopes], Tray sandy loam, and Sunrise sandy loam (purple); Greenfield sandy loam [0–2% slopes], Hesperia fine sandy loam [0–2% slopes], Adelanto coarse sandy loam [0–2% slopes], Rosamond loam, and Vista coarse sandy loam [9-15% slopes, eroded] (green). D Percent clay content: 25.7–31(very dark blue), 18.3–20 (light blue), 11–15 (light green), 7.5–9.3 (yellow), 3.7 (red). Supplementary material 4 (TIFF 9782 kb)

Fig S4

A Display of variation in pH for all individual soil samples (light gray bars) from all sites with indication of site averages (dark gray bars). B Variation of pH for C. immitis positive soil samples (dark gray with black dots) and negative soil samples (light gray bars). Supplementary material 5 (TIFF 316 kb)

Fig S5

Incidence of coccidioidomycosis in the Antelope Valley between 1999 and 2014. Displayed are also various environmental parameters such as PM2.5 and PM10, wind speed and precipitation, as well as changes in land use over the same time period. Indicated are also PM2.5 and PM10 federal and California standards. Supplementary material 6 (TIFF 2246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colson, A.J., Vredenburgh, L., Guevara, R.E. et al. Large-Scale Land Development, Fugitive Dust, and Increased Coccidioidomycosis Incidence in the Antelope Valley of California, 1999–2014. Mycopathologia 182, 439–458 (2017). https://doi.org/10.1007/s11046-016-0105-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0105-5

Keywords

Navigation