Skip to main content

Advertisement

Log in

Intestinal Dysbiosis and Yeast Isolation in Stool of Subjects with Autism Spectrum Disorders

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

High frequency of gastrointestinal yeast presence in ASD subjects was shown through a simple cultural approach (Candida spp. in 57.5 % of ASDs and no controls); the identification of aggressive form (pseudo-hyphae presenting) of Candida spp. at light microscope means that adhesion to intestinal mucosa is facilitated. Dysbiosis appears sustained by lowered Lactobacillus spp. and decreased number of Clostridium spp. Absence of C. difficilis and its toxins in both ASDs and controls is also shown. Low-mild gut inflammation and augmented intestinal permeability were demonstrated together with the presence of GI symptoms. Significant linear correlation was found between disease severity (CARs score) and calprotectin and Clostridium spp. presence. Also GI symptoms, such as constipation and alternating bowel, did correlate (multivariate analyses) with the increased permeability to lactulose. The present data provide rationale basis to a possible specific therapeutic intervention in restoring gut homeostasis in ASDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;16:11–22.

    Google Scholar 

  2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Association; 2013.

    Book  Google Scholar 

  3. Angelidou A, Francio K, Vasiadi M, et al. Neurotensin is increased in serum of young children with autistic disorder. J Neuroinflamm. 2010;7:48. doi:10.1186/1742-2094-7-48.

    Article  Google Scholar 

  4. Ashwood P, Wakefield AJ. Immune activation of peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms. J Neuroimmunol. 2006;173:126–34.

    Article  CAS  PubMed  Google Scholar 

  5. Berni Canani R, Rapacciuolo L, Romano MT, et al. Diagnostic value of faecal calprotectin in paediatric gastroenterology clinical practice. Dig Liver Dis. 2004;36:467–70.

    Article  CAS  PubMed  Google Scholar 

  6. Bradstreet JJ, Vogelaar M, Thyer L. Initial observations of elevated alpha-acetylgalactosaminidase activity associated with autism and observed reductions from GC protein—macrophage activating factor injections. Autism Insights. 2012;4:31–8.

    Article  Google Scholar 

  7. Buie T, Campbell DB, Fuchs GJ III, et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics. 2010;125:S1–18.

    Article  PubMed  Google Scholar 

  8. Buonavolontà R, Boccia G, Turco R, Quitadamo P, Russo D, Staiano A. Pediatric functional gastrointestinal disorders: a questionnaire on pediatric gastrointestinal symptoms based on Rome III criteria. Minerva Pediatr. 2009;61:67–91.

    PubMed  Google Scholar 

  9. Burrus CJ. A biochemical rationale for the interaction between gastrointestinal yeast and autism. Med Hypotheses. 2012;79:784–5.

    Article  CAS  PubMed  Google Scholar 

  10. Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S, et al. Agenetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA. 2006;103:16834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chauhan A, Audhya T, Chauhan V. Brain region-specific glutathione redox imbalance in autism. Neurochem Res. 2012;37:1681–9.

    Article  CAS  PubMed  Google Scholar 

  12. Coury DL, Ashwood P, Fasano A, Fuchs G, Geraghty M, Kaul A, Mawe G, Patterson P, Jones NE. Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics. 2012;130:S160–8.

    Article  PubMed  Google Scholar 

  13. Cozzolino R, deMagistris L, Saggese P, Stocchero M, Martignetti A, DiStasio M, Malorni A, Marotta R, Boscaino F, Malorni L. Use of solid-phase microextraction coupled to gas chromatography-mass spectrometry for determination of urinary volatile organic compounds in autistic children compared with healthy controls. Anal Bioanal Chem. 2014;406:4649–62.

    Article  CAS  PubMed  Google Scholar 

  14. Critchfield JW, van Hemert S, et al. The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract. 2011;. doi:10.1155/2011/161358.

    PubMed  PubMed Central  Google Scholar 

  15. Crumeyrolle-Arias M, Jaglin M, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 2014;42:207–17.

    Article  CAS  PubMed  Google Scholar 

  16. DeAngelis M, Piccolo M, Vannini L, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013;8:e76993.

    Article  CAS  Google Scholar 

  17. deMagistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P, Carteni M, DeRosa M, Francavilla R, Riegler G, Militerni R, Bravaccio C. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr. 2010;51:418–24.

    Article  Google Scholar 

  18. deMagistris L, Picardi A, Siniscalco D, Riccio MP, Sapone A, Cariello R, Abbadessa S, Medici N, Lammers KM, Schiraldi C, Iardino P, Marotta R, Tolone C, Fasano A, Pascotto A, Bravaccio C. Antibodies against food antigens in patients with autistic spectrum disorders (ASDs). Biomed Res Int. 2013;. doi:10.1155/2013/729349.

    Google Scholar 

  19. DeMagistris L, Siniscalco D, Bravaccio C, Loguercio C. Gut-brain axis: a new revolution to understand the pathogenesis of autism and other severe neurological diseases. In: Grossi E, Pace F, editors. Human Nutrition from the Gastroenterologist’s perspective, chapter 4. Dordrecht: Springer; 2016. p. 49–65.

    Google Scholar 

  20. de Theije CG, Wu J, da Silva SL, et al. Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol. 2011;668:S70–80.

    Article  PubMed  Google Scholar 

  21. Ekiel A, Aptekorz M, Kazek B, Wlechula B, Wilk I, Martirosian G. Intestinal microflora of autistic children. Med Dosw Mikrobiol. 2010;62:237–43.

    PubMed  Google Scholar 

  22. Fernell E, Fagerberg UL, Hellstrom PM. No evidence for a clear link between active intestinal inflammation and autism based on analyses of fecal calprotectin and rectal nitric oxide. Acta Pediatr. 2007;96:1076–9.

    Article  Google Scholar 

  23. Finegold SM, Molitoris D, et al. Gastrointestinal microflora studies in late onset autism. Clin Infect Dis. 2002;35:S6–16.

    Article  PubMed  Google Scholar 

  24. Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16:444–53.

    Article  CAS  PubMed  Google Scholar 

  25. Finegold SM. State of the art; microbiology in health and disease. Intestinal bacterial flora in autism. Anaerobe. 2011;17:367–8.

    Article  PubMed  Google Scholar 

  26. Frykman PK, Nordenskjold A, Kawaguchi A, Hui TT, Granstrom AL, Cheng Z, Tang J, Underhill DM, Iliev I, Funari VA, Wester T. Characterization of bacterial and fungal microbiome in children with Hirschsprung disease with and without a history of enterocolitis. PLoS One. 2015;10:e0124172.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gabriele S, Sacco R, Altieri L, Neri C, Urbani A, Bravaccio C, Riccio MP, Iovene MR, Bombace F, deMagistris L, Persico AM. Slow intestinal transit contributes to elevate urinary p-cresol level in Italian autistic children. Autism Res. 2015;. doi:10.1002/aur.1571.

    PubMed  Google Scholar 

  28. Galiatsatos P, Gologan A, Lamoureux E. Autistic enterocolitis: fact or fiction? Can J Gastroenterol. 2009;23:95–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Generoso M, De Rosa M, De Rosa R, deMagistris L, Secondulfo M, Fiandra R, Carratù R, Cartenì M. Cellobiose and lactulose coupled with mannitol and determined using ion-exchange chromatography with pulsed amperometric detection, are reliable probes for investigation of intestinal permeability. J. Chromatogr B Anal Technol Biomed Life Sci. 2003;783:349–57.

    Article  CAS  Google Scholar 

  30. Giulivi C, Zhang YF, Omanska-Klusek A, Ross-Inta C, Wong S, Hertz-Picciotto I, Tassone F, Pessah IN. Mitochondrial dysfunction in autism. JAMA. 2010;304:2389–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gonzales A, Stombaugh J, Lozupone C, Turnbaugh PJ, Gordon JI, Knight R. The mind-body-microbial continuum. Dialogues. Clin Neurosci. 2011;13:55–62.

    Google Scholar 

  32. Herbert MR, Russo JP, Yang S, Roohi J, Blaxill M, Kahler SG, et al. Autism and environmental genomics. Neurotoxicology. 2006;27:671–84.

    Article  CAS  PubMed  Google Scholar 

  33. Hertz-Picciotto I, Croen LA, Hansen R, Jones CR, Van dewater J, Pessah IN. The CHARGE study: an epidemiologic investigation of genetic and environmental factors contributing to autism. Environ Health Perspect. 2006;114:1119–25.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kantarcioglu SA, Kiraz N, Aydin A. Microbiota-Gut-Brain axis: yeast species isolated from stool samples of children with suspected or diagnosed autism spectrum disorders and in vitro susceptibility against nystatin and fluconazole. Mycopathologia. 2016;181:1–7.

    Article  CAS  PubMed  Google Scholar 

  35. Kidd PM. Autism, an extreme challenge to integrative medicine. Part 2: medical management. Altern Med Rev. 2002;7:472–99.

    PubMed  Google Scholar 

  36. Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol. 2011;14:386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jyonouchi H, Geng L, Streck DL, Toruner GA. Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study. J Neuroinflamm. 2012;9:4.

    Article  CAS  Google Scholar 

  38. Jyonouchi H, Geng L, Davidow AL. Cytokine profiles by peripheral blood monocytes are associated with changes in behavioural symptoms following immune insults in a subset of ASD subjects: an inflammatory subtype? J Neuroinflamm. 2014;11:187.

    Article  Google Scholar 

  39. Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.

    Article  CAS  PubMed  Google Scholar 

  40. Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30:205–23.

    Article  CAS  PubMed  Google Scholar 

  41. Losh M, Sullivan PF, Trembath D, Piven J. Current developments in the genetics of autism: from phenome to genome. J Neuropathol Exp Neurol. 2008;67:829–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. MacDonald TT. The significance of ileocolonic lymphoid nodular hyperplasia in children with autistic spectrum disorders. Eur J Gastroenterol Hepatol. 2006;18:569–73.

    Article  PubMed  Google Scholar 

  43. Martirosian G, Ekiel A, Aptekorz M, et al. Fecal lactoferrin and Clostridium spp in stools of autistic children. Anaerobe. 2011;17:43–5.

    Article  PubMed  Google Scholar 

  44. Molloy CA, Manning-Courtney P. Prevalence of chronic gastrointestinal symptoms in children with autism and autistic spectrum disorders. Autism. 2003;7:165–71.

    Article  PubMed  Google Scholar 

  45. Moorthy GL, Murali MR, Devaraj SN. Lactobacilli facilitate maintenance of intestinal membrane integrity during Shigella dysenteriae-1 infection in rats. Nutrition. 2009;25(3):350–8.

    Article  CAS  PubMed  Google Scholar 

  46. Nieminem MT, Uittamo J, Salaspuro M, Rautemaa R. Acetaldehyde production from ethanol and glucose by non-Candida albicans yeasts in vitro. Oral Oncol. 2009;45:e245–8.

    Article  Google Scholar 

  47. Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun. 2012;26:383–92.

    Article  CAS  PubMed  Google Scholar 

  48. Parracho HM, Bingham MO, Gibson GR, et al. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol. 2005;54:987–91.

    Article  PubMed  Google Scholar 

  49. Petrof EO, Claud EC, Gloor GB, Allen-Vercoe E. Microbial ecosystems therapeutics: a new paradigm in medicine? Benef Microbes. 2013;4:53–65.

    Article  CAS  PubMed  Google Scholar 

  50. Rizzetto L, Weil T, Cavalieri D. Systems level dissection of Candida recognition by Dectins: a matter of fungal morphology and site of infection. Pathogens. 2015;4:639–61.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Roseth AG, Fagerhol MK, Aadland E, et al. Assessment of the neutrophil dominating protein calprotectin in feces: a methodological study. Scand J Gastroenterol. 1992;27:793–8.

    Article  CAS  PubMed  Google Scholar 

  52. Sacco R, Lenti C, Saccani M, et al. Cluster analysis of autistic patients based on principal pathogenetic component. Autism Res. 2012;5:137–47.

    Article  PubMed  Google Scholar 

  53. Sandler RH, Finegold SM, Bolte ER, et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol. 2000;15:429–35.

    Article  CAS  PubMed  Google Scholar 

  54. Semon BA. Dietary cyclic dipeptides, apoptosis and psychiatric disorders; a hypothesis. Med Hypotheses. 2014;82:740–3.

    Article  CAS  PubMed  Google Scholar 

  55. Schopler E, Reichler RJ, Renner BR. The childhood autism rating scale (CARS). Los Angeles: Western Psychological Service Inc.; 1988.

    Google Scholar 

  56. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.

    Article  CAS  PubMed  Google Scholar 

  57. Siniscalco D, Sapone A, Giordano C, Cirillo A, de Novellis V, deMagistris L, Rossi F, Fasano A, Maione S, Antonucci N. The expression of caspases is enhanced in peripheral blood mononuclear cells of autism spectrum disorder patients. J Autism Dev Disord. 2012;42:1403–10.

    Article  PubMed  Google Scholar 

  58. Siniscalco D, Sapone A, Giordano C, Cirillo A, deMagistris L, Rossi F, Fasano A, Bradstreet JJ, Maione S, Antonucci N. Cannabinoid receptor type 2, but not type 1, is up-regulated in peripheral blood mononuclear cells of children affected by autistic disorders. J Autism Dev Disord. 2013;43:2686–95.

    Article  PubMed  Google Scholar 

  59. Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol. 2004;70:6459–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wakefield AJ, Ashwood P, Limb K, et al. The significance of ileocolonic lymphoid nodular hyperplasia in children with autistic spectrum disorder. Eur J Gastroenterol Hepatol. 2005;17:827–36.

    Article  PubMed  Google Scholar 

  61. Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I, Bennet A, Jabado O, Hirschberg DL, Lipkin WI. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One. 2011;6:e24585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Williams BL, Hornig M, Parekh T, Lipkin WI, Kazek B, et al. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio. 2012;3(1):e00261-11.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura de Magistris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iovene, M.R., Bombace, F., Maresca, R. et al. Intestinal Dysbiosis and Yeast Isolation in Stool of Subjects with Autism Spectrum Disorders. Mycopathologia 182, 349–363 (2017). https://doi.org/10.1007/s11046-016-0068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0068-6

Keywords

Navigation