Skip to main content
Log in

Control of Ras-Mediated Signaling in Aspergillus fumigatus

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Pathogenic fungi employ numerous mechanisms to flourish in the stressful environment encountered within their mammalian hosts. Central to this arsenal for filamentous fungi is invasive growth within the host microenvironment, mediated by establishment and maintenance of polarized hyphal morphogenesis. In Aspergillus fumigatus, the RasA signal transduction pathway has emerged as a significant regulator of hyphal morphogenesis and virulence, among other processes. The factors contributing to the regulation of RasA itself are not as thoroughly understood, although proper temporal activation of RasA and spatial localization of RasA to the plasma membrane are known to play major roles. Interference with RasA palmitoylation or prenylation results in mislocalization of RasA and is associated with severe growth deficits. In addition, dysregulation of RasA activation results in severe morphologic aberrancies and growth deficits. This review highlights the relationship between RasA signaling, hyphal morphogenesis, and virulence in A. fumigatus and focuses on potential determinants of spatial and temporal RasA regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cox AD, Der CJ. Ras history. Small GTPases. 2010;1:2–27.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Prior IA, Hancock JF. Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol. 2012;23:145–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Gysin S, Salt M, Young A, McCormick F. Therapeutic strategies for targeting ras proteins. Genes Cancer. 2011;2:359–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature. 2004;428:617–24.

    Article  CAS  PubMed  Google Scholar 

  5. Nielsen O, Davey J, Egel R. The ras1 function of Schizosaccharomyces pombe mediates pheromone-induced transcription. EMBO J. 1992;11:1391–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Papadaki P, Pizon V, Onken B, Chang EC. Two ras pathways in fission yeast are differentially regulated by two ras guanine nucleotide exchange factors. Mol Cell Biol. 2002;22:4598–606.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fortwendel JR, Panepinto JC, Seitz AE, Askew DS, Rhodes JC. Aspergillus fumigatus rasA and rasB regulate the timing and morphology of asexual development. Fungal Genet Biol. 2004;41:129–39.

    Article  CAS  PubMed  Google Scholar 

  8. Fortwendel JR, Zhao W, Bhabhra R, Park S, Perlin DS, Askew DS, et al. A fungus-specific ras homolog contributes to the hyphal growth and virulence of Aspergillus fumigatus. Eukaryot Cell. 2005;4:1982–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Fortwendel JR, Fuller KK, Stephens TJ, Bacon WC, Askew DS, Rhodes JC. Aspergillus fumigatus RasA regulates asexual development and cell wall integrity. Eukaryot Cell. 2008;7:1530–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Som T, Kolaparthi VS. Developmental decisions in Aspergillus nidulans are modulated by Ras activity. Mol Cell Biol. 1994;14:5333–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Wright LP, Philips MR. Thematic review series: lipid posttranslational modifications CAAX modification and membrane targeting of Ras. J Lipid Res. 2006;47:883–91.

    Article  CAS  PubMed  Google Scholar 

  12. Choy E, Chiu V, Silletti J, Feoktistov M, Morimoto T, Michaelson D, et al. Endomembrane trafficking of Ras: the CAAX motif targets proteins to the ER and Golgi. Cell. 1999;98:69–80.

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt WK, Tam A, Fujimura-Kamada K, Michaelis S. Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc Natl Acad Sci USA. 1998;95:11175–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Romano JD, Michaelis S. Topological and mutational analysis of Saccharomyces cerevisiae Ste14p, founding member of the isoprenylcysteine carboxyl methyltransferase family. Mol Biol Cell. 2001;12:1957–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bartels DJ, Mitchell DA, Dong X, Deschenes RJ. Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Mol Cell Biol. 1999;19:6775–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Dekker FJ, Rocks O, Vartak N, Menninger S, Hedberg C, Balamurugan R, et al. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat Chem Biol. 2010;6:449–56.

    Article  CAS  PubMed  Google Scholar 

  17. Fortwendel JR, Juvvadi PR, Rogg LE, Asfaw YG, Burns KA, Randell SH, et al. Plasma membrane localization is required for RasA-mediated polarized morphogenesis and virulence of Aspergillus fumigatus. Eukaryot Cell. 2012;11:966–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Qiao J, Gao P, Jiang X, Fang H. In vitro antifungal activity of farnesyltransferase inhibitors against clinical isolates of Aspergillus and Candida. Ann Clin Microbiol Antimicrob. 2013;12:37.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Margolis B, Skolnik EY. Activation of Ras by receptor tyrosine kinases. J Am Soc Nephrol. 1994;5:1288–99.

    CAS  PubMed  Google Scholar 

  20. King N, Carroll SB. A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci USA. 2001;98:15032–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Harispe L, Portela C, Scazzocchio C, Penalva MA, Gorfinkiel L. Ras GTPase-activating protein regulation of actin cytoskeleton and hyphal polarity in Aspergillus nidulans. Eukaryot Cell. 2008;7:141–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Boyce KJ, Hynes MJ, Andrianopoulos A. The Ras and Rho GTPases genetically interact to co-ordinately regulate cell polarity during development in Penicillium marneffei. Mol Microbiol. 2005;55:1487–501.

    Article  CAS  PubMed  Google Scholar 

  23. Fortwendel JR, Juvvadi PR, Rogg LE, Steinbach WJ. Regulatable Ras activity is critical for proper establishment and maintenance of polarity in Aspergillus fumigatus. Eukaryot Cell. 2011;10:611–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Weeks G, Spiegelman GB. Roles played by Ras subfamily proteins in the cell and developmental biology of microorganisms. Cell Signal. 2003;15:901–9.

    Article  CAS  PubMed  Google Scholar 

  25. Harris SD. Cdc42/Rho GTPases in fungi: variations on a common theme. Mol Microbiol. 2011;79:1123–7.

    Article  CAS  PubMed  Google Scholar 

  26. Xu J-R. MAP kinases in fungal pathogens. Fungal Genet Biol. 2000;31:137–52.

    Article  CAS  PubMed  Google Scholar 

  27. Boyce KJ, Andrianopoulos A. Ste20-related kinases: effectors of signaling and morphogenesis in fungi. Trends Microbiol. 2011;19:400–10.

    Article  CAS  PubMed  Google Scholar 

  28. Virag A, Lee MP, Si H, Harris SD. Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans. Mol Microbiol. 2007;66:1579–96.

    CAS  PubMed  Google Scholar 

  29. Li H, Barker BM, Grahl N, Puttikamonkul S, Bell JD, Craven KD, et al. The small GTPase RacA mediates intracellular reactive oxygen species production, polarized growth, and virulence in the human fungal pathogen Aspergillus fumigatus. Eukaryot Cell. 2011;10:174–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kwon MJ, Arentshorst M, Roos ED, van den Hondel CAMJJ, Meyer V, Ram AFJ. Functional characterization of Rho GTPases in Aspergillus niger uncovers conserved and diverged roles of Rho proteins within filamentous fungi. Mol Microbiol. 2011;79:1151–67.

    Article  CAS  PubMed  Google Scholar 

  31. Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi F, Northup J, et al. Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins. Cell. 1985;41:763–9.

    Article  CAS  PubMed  Google Scholar 

  32. Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, et al. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell. 1985;40:27–36.

    Article  CAS  PubMed  Google Scholar 

  33. Rocha CR, Schröppel K, Harcus D, Marcil A, Dignard D, Taylor BN, et al. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell. 2001;12:3631–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hogan DA, Sundstrom P. The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future Microbiol. 2009;4:1263–70.

    Article  CAS  PubMed  Google Scholar 

  35. Fillinger S, Chaveroche M-K, Shimizu K, Keller N, d’ Enfert C. cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. Mol Microbiol. 2002;44:1001–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support for this work was provided by NIH K22 AI89786-01A1 and R01 AI106925-01A1 to JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarrod R. Fortwendel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norton, T.S., Fortwendel, J.R. Control of Ras-Mediated Signaling in Aspergillus fumigatus . Mycopathologia 178, 325–330 (2014). https://doi.org/10.1007/s11046-014-9765-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-014-9765-1

Keywords

Navigation