Skip to main content
Log in

An efficient VC-1 to H.264 IPB-picture transcoder with pixel domain processing

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

VC-1 is one of the three video coding standards for Blu-ray DVD, which also includes MPEG-2 and H.264. In this paper, an efficient transcoding algorithm from VC-1 video to H.264 video is discussed, we present a transcoder that addresses I, P, B, and interlaced pictures. The main differences between the two standards are analyzed and a solution for transforming from one to the other is presented. The paper proposes a pixel domain transcoder which exploits the variable size transform used in VC-1 to select the variable block size for motion compensation in H.264. We also discuss transcoding of high profile video features; in particular, adaptive size transform and interlacing. Experimental results show that the pixel domain approach reduces computational complexity by more than 50 % as compared to a cascaded one with negligible drop in peak-signal-to-noise-ratio (PSNR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Available at http://students.engr.scu.edu/~mpantoja/videos.html.

  • Bialkowski, J., Barkowsky, M., Kaup, A. (2006). Overview of low-complexity video transcoding from H.263 to H.264. In Proceedings of the IEEE International Conference on Multimedia and Exposure, pp. 49–52.

  • Bjontegaard, G. (2001). Calculation of average PSNR differences between RD-curves. ITU-T VCEG Document VCEG-M33.

  • Fernandez-Escribano, G., Kalva, H., Cuenca, P., Orozco-Barbosa, L. (2006). Very low complexity MPEG-2 to H.264 transcoding using machine learning. In Proceedings of the ACM International Conference on Multimedia (pp. 931–940). Santa Barbara, CA, USA.

  • Fernandez-Escribano, G., Kalva, H., Martinez, J. L., Cuenca, P., Orozco-Barbosa, L., & Garrido, A. (2010). An MPEG-2 to H.264 video transcoder in the baseline profile. IEEE Transactions on Circuits and Systems for Video Technology, 20(5), 763–768.

    Article  Google Scholar 

  • H.264/AVC Reference Software JM 18.4. Available at http://iphome.hhi.de/suehring/tml/.

  • ITU-T (2007). Advanced video coding for generic audiovisual services. ITU-T Rec. H.264 V. 8, Nov. 2007.

  • Jiang, M., & Ling, N. (2006). Low-delay rate control for real-time H.264/AVC video coding. IEEE Transactions on Multimedia, 8(3), 467–477.

    Article  Google Scholar 

  • Kato, H., Takishima, Y., & Nakayima, Y. (Jan. 2007). A fast DV to MPEG-4 transcoder integrated with resolution conversion and quantization. IEEE Transactions on Circuits and Systems for Video Technolology, 17(1), 111–119.

    Google Scholar 

  • Kim, I.-K., McCann, K., Sugimoto, K., Bross, B., Han, W.-J. (2012). HM9: High Efficiency Video Coding (HEVC) Test Model 9 Encoder Description. JCTVC-K1002v2, 11th Meeting. Shanghai: China, Oct. 10–19, 2012.

  • Lee, Y.-K., Lee, S.-S., Lee, Y.-L. (2006). MPEG-4 to H.264 transcoding using macroblock statistics. In Proceedings of the IEEE International Conference on Multimedia and Exposure, pp. 57–60.

  • Lee, J.-B., & Eleftheriadis, A. (2000). 2-D transform-domain resolution translation. IEEE Transactions on Circuits and Systems for Video Technology, 10(5), 704–714.

    Article  Google Scholar 

  • List, P., Joch, A., Lainema, J., Bjontegaard, Gisle, & Karczewicz, M. (2003). Adaptive deblocking filter. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 614–619.

    Article  Google Scholar 

  • Lu, X., Tourapis, A. M., Yin, P., & Boyce, J. (2005). Fast mode decision and motion estimation for H.264 with focus on MPEG-2/H.264 transcoding. In Proceedings of the IEEE International Symposium on Circuits and Systems, 2, 1246–1249.

  • Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer, T., Wedi, T. (2004). Video coding with H.264/AVC: Tools, performance, and complexity. In IEEE Circuits and Systems and Magazine, 4(1), 7–28, First Quarter 2004.

  • Pantoja, M., Ling, N. (2009). Low complexity rate control for VC-1 to H.264 transcoding. In Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 888–891.

  • Pantoja, M., Kalva, H., Lee, J.-B. (2007a). P-Frame transcoding in VC-1 to H.264 transcoders. In Proceedings of the IEEE International Conference on Image Processing, 5 (pp. 297–300). San Antonio, TX.

  • Pantoja, M., Ling, N., Shang, W. (2007b). Coefficient conversion for transform domain VC-1 to H.264 transcoding. In Proceedings of the IEEE Workshop on Signal Processing Systems (Oct. 17–19). China: Shanghai.

  • Pantoja, M., & Ling, N. (2008). Transcoding with resolution conversion and irregular sampling. Proceedings of the IEEE International Conference on Image Processing, 1, 2852–2855.

    Google Scholar 

  • Petljanski, B., Kalva, H. (2006). DCT domain intra MB mode decision for MPEG-2 to H.264 transcoding. In Proceedings of the IEEE International Conference on Consumer Electronics, pp. 419–420.

  • Qian, T., Sun, J., Li, D., Yang, X., & Wang, J. (2006). Transform domain transcoding from MPEG-2 to H.264 with interpolation drift-error compensation. IEEE Transactions on Circuits and Systems for Video Technology, 16(4), 523–534.

    Article  Google Scholar 

  • Shen, B. (2003). Efficient deblocking and optimal quantizer selection for video transcoding. Proceedings of the IEEE International Conference on Image Processing, 1, 193–196.

    Google Scholar 

  • Shen, G., He, Y., Cao, W., & Li, S. (2006). MPEG-2 to WMV transcoder with adaptive error compensation and dynamic switches. IEEE Transactions on Circuits and Systems for Video Technology, 16(12), 1460–1476.

    Article  Google Scholar 

  • SMPTE (2006). Standard for television: VC-1 compressed video bitstream format and decoding process. SMPTE 421M–2006.

  • Srinivassan, S., Hsu, P., Holcomb, T., Mukerjee, K., Regunathan, S., Lin, B., et al. (Oct. 2004). WMV-9: Overview and applications. Signal Processing: Image Communication, Elsevier, 19(9), 851–875.

    Google Scholar 

  • Sun, H., Chiang, T., & Chen, X. (2004). Digital Video Transcoding for Transmission and Storage. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Tang, Q., & Nasiopoulos, P. (2010). Efficient motion re-estimation with rate-distortion optimization for MPEG-2 to H.264/AVC transcoding. IEEE Transactions on Circuits and Systems for Video Technology, 20(2), 262–274.

    Article  Google Scholar 

  • Wu, J.-C., Huang, P., Yao, J. J., & Chen, H. H. (2011). A collaborative transcoding strategy for live broadcasting over peer-to-peer IPTV networks. IEEE Transactions on Circuits and Systems for Video Technology, 21(2), 220–224.

    Article  Google Scholar 

  • Wu, Z., Yu, H., Tang, B., & Chen, C. W. (2012). Adaptive initial quantization parameter determination for H.264/AVC video transcoding. IEEE Transactions on Broadcasting, 58(2), 277–284.

    Article  Google Scholar 

  • Xin, J., Vetro, A., Sekiguchi, S., Sugimoto, K. (Jan. 2006). MPEG-2 to H.264/AVC transcoding for efficient storage of broadcast video bitstreams. In Proceedings of the IEEE International Conference on Consumer Electronics, pp. 417–418.

  • Xin, J., Sun, M.-T., Choi, B., & Chun, K. (Nov. 2002). An HDTV-to-SDTV spatial transcoder. IEEE Transactions on Circuits and Systems for Video Technology, 12(11), 998–1008.

    Google Scholar 

  • Xu, L., Kwong, S., Wang, H., Zhang, Y., Zhao, D., & Gao, W. (2012). A universal rate control scheme for video transcoding. IEEE Transactions on Circuits and Systems for Video Technology, 22(4), 489–501.

    Article  Google Scholar 

  • Zhou, Z., Sun, S., Lei, S., & Sun, M.-T. (2005). Motion information and coding mode reuse for MPEG-2 to H.264 transcoding. Proceeedings of the IEEE International Symposium on Circuits and Systems, 2, 1230–1233.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Pantoja.

ANNEX I—QP MAPPING

ANNEX I—QP MAPPING

In VC-1, QP (\(QP_{VC-1})\) has values that range from 1-31; in H.264 QP (\(QP_{H.264}\)) values range from 1-51. To find the relation between the QPs in both standards the following experiment was performed with several video sequences:

  1. 1.

    Compress a video sequence using VC-1 for all QPs possible, rate control turned off.

  2. 2.

    Compress the same video sequence as in Step 1 using H.264 for all QPs possible with rate control turned off.

  3. 3.

    Graph the bit-rate vs. QP for the two standards and obtain the relationship between \(QP_{VC-1}\) to \(QP_{H.264}\) using regression analysis.

We performed Steps 1–3 for different sequences to ensure repeatability of the results. From the experiments we conclude that:

  1. a)

    VC-1 can only achieve the same bit-rates as H.264 if the QP for H.264 ranges from 10 to 29.

  2. b)

    Using non-linear least squares regression we obtain the following polynomial to adjust the data:

    $$\begin{aligned} QP_{H.264} =a^*QP_{VC-1}^2 +b^*QP_{VC-1} +c. \end{aligned}$$

Here \(a = -0.02, b = 1.10\), and \(c = 9.92\). The coefficient of correlation is \(r = 0.985\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantoja, M., Ling, N., Kalva, H. et al. An efficient VC-1 to H.264 IPB-picture transcoder with pixel domain processing. Multidim Syst Sign Process 26, 555–574 (2015). https://doi.org/10.1007/s11045-013-0259-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-013-0259-y

Keywords

Navigation