Skip to main content
Log in

Nonsmooth spatial frictional contact dynamics of multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Nonsmooth dynamics algorithms have been widely used to solve the problems of frictional contact dynamics of multibody systems. The linear complementary problems (LCP) based algorithms have been proved to be very effective for the planar problems of frictional contact dynamics. For the spatial problems of frictional contact dynamics, however, the nonlinear complementary problems (NCP) based algorithms usually achieve more accurate results even though the LCP based algorithms can evaluate the friction force and the relative tangential velocity approximately. In this paper, a new computation methodology is proposed to simulate the nonsmooth spatial frictional contact dynamics of multibody systems. Without approximating the friction cone, the cone complementary problems (CCP) theory is used to describe the spatial frictional continuous contact problems such that the spatial friction force can be evaluated accurately. A prediction term is introduced to make the established CCP model be applicable to the cases at high sliding speed. To improve the convergence rate of Newton iterations, the velocity variation of the nonsmooth dynamics equations is decomposed into the smooth velocities and nonsmooth (jump) velocities. The smooth velocities are computed by using the generalized-\(\mathbf{a}\) algorithm, and the nonsmooth velocities are integrated via the implicit Euler algorithm. The accelerated projected gradient descend (APGD) algorithm is used to solve the CCP. Finally, four numerical examples are given to validate the proposed computation methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Abbreviations

\(g_{n}\) :

gap function

\(P_{A},P_{B}\) :

contact candidate points

\(\mathbf{f}\) :

vector of frictional contact force

\(\mathbf{f}_{n}\) :

vector of normal contact force

\(\mathbf{f}_{t}\) :

vector of tangential friction force

\(\lambda _{n},\lambda _{u},\lambda _{w}\) :

frictional contact force components

\(\mathbf{n}\) :

unit vector of normal contact direction

\(\mathbf{u},\mathbf{w}\) :

unit vectors in the contact tangential plane

\(P_{c}\) :

contact point

\(\bar{\mathbf{v}}_{t}\) :

vector of relative tangential velocity

\(\mu \) :

frictional coefficient

\(\bar{v}_{n}\) :

relative normal velocity

\(\bar{v}_{u}\) :

relative velocity along direction \(\mathbf{u}\)

\(\bar{v}_{w}\) :

relative velocity along direction \(\mathbf{w}\)

\(e\) :

restitution coefficient

\(\bar{v}_{n}^{ +} \) :

relative normal velocity after an impact

\(\bar{v}_{n}^{ -} \) :

relative normal velocity before an impact

\(\mathbf{D}_{n},\mathbf{D}_{u},\mathbf{D}_{w}\) :

generalized directions along directions \(\mathbf{n}\), \(\mathbf{u}\) and \(\mathbf{w}\), respectively

\(\mathbf{D}\) :

generalized direction matrix for unilateral constraints

\(\tilde{\mathbf{D}}\) :

generalized direction matrix for continuous contacts

\(\hat{\mathbf{D}}\) :

generalized direction matrix for transient impacts

\(h\) :

integration time step

\(\xi \) :

Lagrange multiplier for the KKT conditions

\(FC\) :

friction cone

\(FC^{o}\) :

polar cone of the friction cone

\(FC_{i}\) :

friction cone for the \(i\)th contact pair

\(FC_{i}^{o}\) :

polar cone for the \(i\)th friction cone

\(C\) :

complete friction cone

\(C^{o}\) :

polar cone of the complete friction cone

\(\mathbf{q}\) :

generalized coordinates

\(\mathbf{M}\) :

mass matrix of system

\(\mathbf{v}\) :

vector of generalized velocities

\(\tilde{\mathbf{v}}\) :

vector of smooth generalized velocities

\(\hat{\mathbf{v}}\) :

vector of nonsmooth generalized velocities

\(\boldsymbol{\Phi } \) :

vector of bilateral constraints

\(\boldsymbol{\Phi }_{\mathbf{q}}\) :

Jacobi of vector of bilateral constraints

\(\mathbf{F}\) :

vector of generalized forces

\(\boldsymbol{\lambda }_{b}\) :

vector of Lagrange multipliers for bilateral constraints

\(\boldsymbol{\lambda }_{u}\) :

vector of reaction forces of smooth unilateral constraints

\(\boldsymbol{\Lambda }_{u}\) :

vector of reaction impulses of nonsmooth unilateral constraints

\(\delta _{t_{j}}\) :

Dirac delta function at an instant \(t_{j}\)

\(\prod_{C}\) :

projection function of the domain \(C\)

:

generalized-a algorithm parameters

\(\theta ,\zeta \) :

APGD algorithm parameters

References

  1. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  2. Studer, C.: Numerics of Unilateral Contact and Friction: Modeling and Numerical Time Integration in Nonsmooth Dynamics. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  3. Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)

    Article  Google Scholar 

  4. Nakashima, H., Oida, A.: Algorithm and implementation of soil–tire contact analysis code based on dynamic FE–DE method. J. Terramech. 41, 127–137 (2004)

    Article  Google Scholar 

  5. Dufva, K., Kerkkänen, K., Maqueda, L.G., Shabana, A.A.: Nonlinear dynamics of three-dimensional belt drives using the finite-element method. Nonlinear Dyn. 48, 449–466 (2007)

    Article  MATH  Google Scholar 

  6. Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012)

    Article  Google Scholar 

  7. Dubois, F., Acary, V., Jean, M.: The contact dynamics method: a nonsmooth story. C. R., Méc. 346, 247–262 (2018)

    Article  Google Scholar 

  8. Leine, R.I., Glocker, C.: A set-valued force law for spatial Coulomb–Contensou friction. Eur. J. Mech. A, Solids 22, 193–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cottle, R., Pang, W.: The Linear Complementarity Problem. Academic Press, London (1992)

    MATH  Google Scholar 

  10. Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin (1988)

    MATH  Google Scholar 

  11. Lötstedt, P.: Coulomb friction in two-dimensional rigid body systems. Z. Angew. Math. Mech. 61, 605–615 (1981)

    Article  MathSciNet  Google Scholar 

  12. Lötstedt, P.: Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. Appl. Math. 42, 281–296 (1982)

    Article  MathSciNet  Google Scholar 

  13. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications, pp. 1–82. Springer, Vienna (1988)

    Chapter  Google Scholar 

  14. Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177, 329–349 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schatzman, M.: A class of nonlinear differential equations of second order in time. Nonlinear Anal., Theory Methods Appl. 2, 355–373 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Al-Fahed, A.M., Stavroulakis, G.E., Panagiotopoulos, P.D.: A linear complementarity approach to the frictionless gripper problem. Int. J. Robot. Res. 11, 112–122 (1992)

    Article  Google Scholar 

  17. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Čepon, G., Boltežar, M.: Dynamics of a belt-drive system using a linear complementarity problem for the belt–pulley contact description. J. Sound Vib. 319, 1019–1035 (2009)

    Article  Google Scholar 

  19. Pfeiffer, F., Foerg, M., Ulbrich, H.: Numerical aspects of non-smooth multibody dynamics. Comput. Methods Appl. Mech. Eng. 195, 6891–6908 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klarbring, A.: A mathematical programming approach to three-dimensional contact problems with friction. Comput. Methods Appl. Mech. Eng. 58, 175–200 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miller, A.T., Christensen, H.I.: Implementation of multi-rigid-body dynamics within a robotic grasping simulator. IEEE Int. Conf. Robot. Autom. 2, 2262–2268 (2003)

    Google Scholar 

  22. Pfeiffer, F.: Non-smooth engineering dynamics. Meccanica 51, 3167–3184 (2016)

    Article  MathSciNet  Google Scholar 

  23. Tasora, A., Anitescu, M.: A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics. Comput. Methods Appl. Mech. Eng. 200, 439–453 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yu, X., Matikainen, M.K., Harish, A.B., Mikkola, A.: Procedure for non-smooth contact for planar flexible beams with cone complementarity problem. Proc. Inst. Mech. Eng., Part K, J. Multi-Body Dyn. (2020)

  25. Anitescu, M., Tasora, A.: An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput. Optim. Appl. 47, 207–235 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Negrut, D., Serban, R., Tasora, A.: Posing multibody dynamics with friction and contact as a differential complementarity problem. J. Comput. Nonlinear Dyn. 13, 014503 (2018)

    Article  Google Scholar 

  27. Mazhar, H., Heyn, T., Negrut, D., Tasora, A.: Using Nesterov’s method to accelerate multibody dynamics with friction and contact. ACM Trans. Graph. 34, 1–14 (2015)

    Article  MATH  Google Scholar 

  28. Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (DETC2005-85096). J. Comput. Nonlinear Dyn. 2, 73–85 (2007)

    Article  Google Scholar 

  29. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Paoli, L., Schatzman, M.: A numerical scheme for impact problems I: the one-dimensional case. SIAM J. Numer. Anal. 40, 702–733 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Paoli, L., Schatzman, M.: A numerical scheme for impact problems II: the multidimensional case. SIAM J. Numer. Anal. 40, 734–768 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Acary, V.: Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts. Appl. Numer. Math. 62, 1259–1275 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, Q., Acary, V., Virlez, G., Brüls, O.: A nonsmooth generalized-\(\alpha \) scheme for flexible multibody systems with unilateral constraints. Int. J. Numer. Methods Eng. 96, 487–511 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cavalieri, F.J., Cardona, A.: Non-smooth model of a frictionless and dry three-dimensional revolute joint with clearance for multibody system dynamics. Mech. Mach. Theory 121, 335–354 (2018)

    Article  Google Scholar 

  35. Brüls, O., Acary, V., Cardona, A.: Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-\(\alpha \) scheme. Comput. Methods Appl. Mech. Eng. 281, 131–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cosimo, A., Galvez, J., Cavalieri, F.J., et al.: A robust nonsmooth generalized-\(\alpha \) scheme for flexible systems with impacts. Multibody Syst. Dyn. 48, 127–149 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Galvez, J., Cavalieri, F.J., Cosimo, A., Brüls, O., Cardona, A.: A nonsmooth frictional contact formulation for multibody system dynamics. Int. J. Numer. Methods Eng. 121, 3584–3609 (2020)

    Article  MathSciNet  Google Scholar 

  38. Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14, 231–247 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stewart, D.: Rigid-body dynamics with friction and impact. SIAM Rev. 42, 3–39 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Anitescu, M., Hart, G.D.: A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction. Int. J. Numer. Methods Eng. 60, 2335–2371 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Acary, V., Brémond, M., Huber, O.: On solving contact problems with Coulomb friction: formulations and numerical comparisons. In: Leine, R., Acary, V., Brüls, O. (eds.) Advanced Topics in Nonsmooth Dynamics, pp. 375–457. Springer, Cham (2018)

    Chapter  Google Scholar 

  42. Acary, V., Cadoux, F., Lemaréchal, C., Malick, J.: A formulation of the linear discrete Coulomb friction problem via convex optimization. Z. Angew. Math. Mech. 91, 155–175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Cebulla, T.H.: Spatial dynamics of pushbelt CVTs: model enhancements to a non-smooth flexible multibody system. Ph.D., Technical University of Munich (2014)

  44. García, J.J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New York (1994)

    Book  Google Scholar 

  45. García-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50, 249–264 (2007)

    Article  MATH  Google Scholar 

  46. Liu, C., Tian, Q., Hu, H.Y.: New spatial curved beam and cylindrical shell elements of gradient-deficient Absolute Nodal Coordinate Formulation. Nonlinear Dyn. 70, 1903–1918 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 11722216, 11832005 and by the 111 China Project (B16003). We also would like to thank the two anonymous referees for their professional reviews and insightful comments, which have led us to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Tian.

Ethics declarations

Declaration on conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Dynamic equation of the rigid sliding rod

As shown in Fig. 31, a rigid rod is subject to oblique sliding under the action of gravity. The length of the rod is \(l\), \(\mu \) denotes the friction coefficient. According to the normal and tangential contact forces shown in Fig. 31, it is straightforward to establish the dynamic equations of the rod as follows:

$$\begin{aligned} &F_{1} + \mu F_{2} - mg - m\ddot{y} = 0, \\ \end{aligned}$$
(38)
$$\begin{aligned} &F_{2} - \mu F_{1} - m\ddot{x} = 0, \\ \end{aligned}$$
(39)
$$\begin{aligned} &\frac{l}{2} \bigl[ ( \mu F_{1} + F_{2} ) \sin \theta + ( \mu F_{2} - F_{1} )\cos \theta \bigr] + r \bigl[ ( \mu F_{1} - F_{2} )\cos \theta + ( \mu F_{2} + F_{1} )\sin \theta \bigr] = J\ddot{\theta }, \end{aligned}$$
(40)

where \(r\) denotes the cross-sectional radius of the rod and \(J\) is the moment of inertia of the rod, satisfying

$$ J = \frac{ml^{2}}{12} + \frac{mr^{2}}{4}. $$
(41)

The coordinates of the rod mass center yield

$$ \left \{ \textstyle\begin{array}{l} x = \frac{l}{2}\cos \theta + r\sin \theta \\ y = \frac{l}{2}\sin \theta + r\cos \theta \end{array}\displaystyle \right . $$
(42)
Fig. 31
figure 31

Sliding oblique rigid rod model

Substituting Eqs. (41), (42), (38) and (39) into Eq. (40) gives the dynamic equation of the sliding rod as follows:

$$\begin{aligned} &mg \biggl[ \mu l\sin \theta + \frac{1}{2} \bigl( \mu ^{2} - 1 \bigr)l\cos \theta + \bigl( \mu ^{2} + 1 \bigr)r\sin \theta \biggr] \\ &\qquad{}- m \biggl[ \frac{1}{2}\mu l^{2} - rl\cos ( 2 \theta ) + \mu rl\sin ( 2\theta ) \biggr]\dot{\theta }^{2} \\ &\quad= \biggl[ \bigl( 1 + \mu ^{2} \bigr)J + \frac{1}{4} \bigl( 1 - \mu ^{2} \bigr)ml^{2} - mrl\sin ( 2\theta ) + \bigl( \mu ^{2} + 1 \bigr)mr^{2} \biggr]\ddot{\theta } \end{aligned}$$
(43)

Given the initial condition of the rod as \(\theta = \pi /4, \dot{\theta } = 0\), Fig. 13 and Fig. 14, show the numerical solutions of Eq. (43). According to the results, the normal contact force \(F_{2}\) becomes negative after the moment 0.271 s when the rod gets separated from the vertical wall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Tian, Q. & Hu, H. Nonsmooth spatial frictional contact dynamics of multibody systems. Multibody Syst Dyn 53, 1–27 (2021). https://doi.org/10.1007/s11044-021-09786-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-021-09786-w

Keywords

Navigation