Skip to main content
Log in

Trajectory planning and coordination control of a space robot for detumbling a flexible tumbling target in post-capture phase

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The rapid growth of space debris poses a serious threat to space exploration activities. Large space debris, such as malfunctioning satellites, are generally uncooperative tumbling objects with flexible appendages. This paper investigates the detumbling scheme for a flexible target using a flexible-base space robot in post-capture phase. This scheme consists of trajectory planning and coordination control, which can bring the target to rest and stabilize the base attitude of the space robot while suppressing the vibrations of the flexible panels. In this paper, a recursive method based on the Newton–Euler formulation is employed to derive the kinematics and dynamics of the combined system. The trajectory planning of the end-effector is converted to a constrained multiobjective optimization problem, whose Pareto front is obtained by the multiobjective particle swarm optimization (MOPSO) algorithm. A coordination controller is developed to track the planned trajectories of the space robot. The presented numerical simulations verify the effectiveness of the detumbling scheme and its robustness to space targets with parametric uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Liou, J.C., Johnson, N.L., Hill, N.M.: Controlling the growth of future LEO debris populations with active debris removal. Acta Astronaut. 66, 648–653 (2010)

    Google Scholar 

  2. Murtaza, A., Pirzada, S.J.H., Xu, T., Liu, J.: Orbital debris threat for space sustainability and way forward. IEEE Access 8, 61000–61019 (2020)

    Google Scholar 

  3. Shan, M.H., Guo, J., Gill, E.: Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 80, 18–32 (2016)

    Google Scholar 

  4. Inaba, N., Oda, M.: Autonomous satellite capture by a space robot. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, USA, pp. 1169–1174 (2000)

    Google Scholar 

  5. Friend, R.B.: Orbital Express program summary and mission overview. In: Proceedings of SPIE 6958, Sensors and Systems for Space Applications II. SPIE Defense and Security Symposium, Orlando, USA, p. 695803 (2008)

    Google Scholar 

  6. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014)

    Google Scholar 

  7. Liu, Y., Yu, Z., Liu, X., Cai, G.: Active detumbling technology for high dynamic non-cooperative space targets. Multibody Syst. Dyn. 47(1), 21–41 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Nishida, S.I., Kawamoto, S.: Strategy for capturing of a tumbling space debris. Acta Astronaut. 68, 113–120 (2011)

    Google Scholar 

  9. Cyril, X., Misra, A.K., Ingham, M., Jaar, G.J.: Postcapture dynamics of a spacecraft–manipulator–payload system. J. Guid. Control Dyn. 23(1), 95–100 (2000)

    Google Scholar 

  10. Gilardi, G., Kawamoto, S., Kibe, S.: Capture of a non-cooperative object using a two-arm manipulator. In: 55th International Astronautical Congress, Vancouver, Canada, (2004). IAC-04-A.5.06

    Google Scholar 

  11. Yoshida, K., Nakanishi, H., Ueno, H., Inaba, N., Nishimaki, T., Oda, M.: Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite. Adv. Robot. 18(2), 175–198 (2004)

    Google Scholar 

  12. Yoshida, K., Dimitrov, D., Nakanishi, H.: On the capture of tumbling satellite by a space robot. In: Proceedings of the IEEE/RSJ 2006 International Conference on Intelligent Robots and Systems, Beijing, China, pp. 4127–4132 (2006)

    Google Scholar 

  13. Xu, W., Peng, J., Liang, B., Mu, Z.: Hybrid modeling and analysis method for dynamic coupling of space robots. IEEE Trans. Aerosp. Electron. Syst. 52(1), 85–98 (2016)

    Google Scholar 

  14. Lampariello, R., Tuong, D., Castellini, C., Hirzinger, G., Peters, J.: Trajectory planning for optimal robot catching in real-time. In: Proceedings of the IEEE Conference on Robotics and Automation, Shanghai, China, pp. 3719–3726 (2011)

    Google Scholar 

  15. Wang, M., Luo, J., Walter, U.: Trajectory planning of free-floating space robot using particle swarm optimization (PSO). Acta Astronaut. 112, 77–88 (2015)

    Google Scholar 

  16. James, F., Shah, S.V., Singh, A.K., Krishna, K.M., Misra, A.K.: Reactionless maneuvering of a space robot in precapture phase. J. Guid. Control Dyn. 39(10), 2419–2425 (2016)

    Google Scholar 

  17. Xu, W., Hu, Z., Yan, L., Yuan, H., Liang, B.: Modeling and planning of a space robot for capturing a tumbling target by approaching the dynamic closest point. Multibody Syst. Dyn. 47, 203–241 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Aghili, F.: A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics. IEEE Trans. Robot. 28(3), 634–649 (2012)

    Google Scholar 

  19. Luo, J., Zong, L., Wang, M., Yuan, J.: Optimal capture occasion determination and trajectory generation for space robots grasping tumbling objects. Acta Astronaut. 136, 380–386 (2017)

    Google Scholar 

  20. Oki, T., Nakanishi, H., Yoshida, K.: Whole-body motion control for capturing a tumbling target by a free-floating space robot. In: Proceedings of 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, USA, pp. 2256–2261 (2007)

    Google Scholar 

  21. Abiko, S., Yoshida, K.: Adaptive reaction control for space robotic applications with dynamic model uncertainty. Adv. Robot. 24, 1099–1126 (2010)

    Google Scholar 

  22. Nguyen-Huynh, T.C., Sharf, I.: Adaptive reactionless motion and parameter identification in postcapture of space debris. J. Guid. Control Dyn. 36(2), 404–414 (2013)

    Google Scholar 

  23. Liu, X.F., Li, H.Q., Chen, Y.J., Cai, G.P., Wang, X.: Dynamics and control of capture of a floating rigid body by a spacecraft robotic arm. Multibody Syst. Dyn. 33, 315–332 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Uyama, N., Narumi, T.: Hybrid impedance/position control of a free-flying space robot for detumbling a noncooperative satellite. IFAC-PapersOnLine 49(17), 230–235 (2016)

    Google Scholar 

  25. Stolfi, A., Gasbarri, P., Satatini, M.: A combined impedance-PD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target. Acta Astronaut. 139, 243–253 (2017)

    Google Scholar 

  26. She, Y., Sun, J., Li, S., Li, W., Song, T.: Quasi-model free control for the post-capture operation of a non-cooperative target. Acta Astronaut. 147, 59–70 (2018)

    Google Scholar 

  27. Gangapersaud, R.A., Liu, G., de Ruiter, A.H.J.: Detumbling a non-cooperative space target with model uncertainties using a space manipulator. J. Guid. Control Dyn. 42(4), 910–918 (2019)

    Google Scholar 

  28. Aghili, F.: Optimal control for robotic capturing and passivation of a tumbling satellite with unknown dynamics. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, USA (2008). AIAA 2008-7274

    Google Scholar 

  29. Aghili, F.: Optimal control of a space manipulator for detumbling of a target satellite. In: 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 3019–3024 (2009)

    Google Scholar 

  30. Flores-Abad, A., Wei, Z., Ma, O., Pham, K.: Optimal control of space robots for capturing a tumbling object with uncertainties. J. Guid. Control Dyn. 37(6), 2014–2017 (2014)

    Google Scholar 

  31. Zhang, X., Xu, T., Wei, C.: Novel finite-time attitude control of postcapture spacecraft with input faults and quantization. Adv. Space Res. 65, 297–311 (2020)

    Google Scholar 

  32. Zhang, B., Liang, B., Wang, Z., Mi, Y., Zhang, Y., Chen, Z.: Coordinated stabilization for space robot after capturing a noncooperative target with large inertia. Acta Astronaut. 134, 75–84 (2017)

    Google Scholar 

  33. Soltanpour, M.R., Khooban, M.H.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74, 467–478 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Rigatos, G., Siano, P., Raffo, G.: A nonlinear H-infinity control method for multi-DOF robotic manipulators. Nonlinear Dyn. 88, 329–348 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Zarafshan, P., Moosavian, S.A.A.: Manipulation control of a space robot with flexible solar panels. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montréal, Canada, pp. 1099–1104 (2010)

    Google Scholar 

  36. Xu, W., Meng, D., Chen, Y., Qian, H., Xu, Y.: Dynamics modeling and analysis of a flexible-base space robot for capturing larger flexible spacecraft. Multibody Syst. Dyn. 32, 357–401 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Dubanchet, V.: Modeling and control of a flexible space robot to capture a tumbling debris. Doctoral dissertation, University of Montreal, Montreal, Canada (2016)

  38. Hirano, D., Fujii, Y., Abiko, S., Lampariello, R., Nagaoka, K., Yoshida, K.: Vibration suppression control of a space robot with flexible appendage based on simple dynamic model. In: IEEE International Conference on Intelligent Robots and Systems (IROS2013), Tokyo, Japan, pp. 789–794 (2013)

    Google Scholar 

  39. Meng, D., Lu, W., Xu, W., She, Y., Wang, X., Liang, B., Yuan, B.: Vibration suppression control of free-floating space robots with flexible appendages for autonomous target capturing. Acta Astronaut. 151, 904–918 (2018)

    Google Scholar 

  40. Stolfi, A., Gasbarri, P., Satatini, M.: A parametric analysis of a controlled deployable space manipulator for capturing a non-cooperative flexible satellite. Acta Astronaut. 148, 317–326 (2018)

    Google Scholar 

  41. Singh, S., Mooij, E.: Robust control for active debris removal of a large flexible space structure. In: AIAA SciTech Forum, Orlando, USA (2020)

    Google Scholar 

  42. Stieber, M.E., Trudel, C.P.: Advanced control system features of the space station remote manipulator system. In: IFAC Automatic Control in Aerospace, Ottobrunn, Germany, pp. 279–286 (1992)

    Google Scholar 

  43. Wang, M., Luo, J., Yuan, J., Walter, U.: Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target. Nonlinear Dyn. 92, 1023–1043 (2018)

    Google Scholar 

  44. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, London (2009)

    Google Scholar 

  45. Seifried, R.: Dynamics of Underactuated Multibody Systems: Modeling, Control, and Optimal Design. Springer, Heidelberg (2014)

    MATH  Google Scholar 

  46. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings of IEEE Swarm Intelligence Symposium, Honolulu, USA, pp. 120–127 (2007)

    Google Scholar 

  47. Coello-Coello, C.A., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the IEEE Congress on Computational Intelligence, Honolulu, USA, pp. 1051–1056 (2002)

    Google Scholar 

  48. Coello-Coello, C.A., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Google Scholar 

  49. Geradin, M., Rixen, D.J.: Mechanical Vibrations: Theory and Application to Structural Dynamics. Wiley, Chichester (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant Nos. 11772187 and 11802174) and the China Postdoctoral Science Foundation (Grant No. 2018M632104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, X., Cai, G. et al. Trajectory planning and coordination control of a space robot for detumbling a flexible tumbling target in post-capture phase. Multibody Syst Dyn 52, 281–311 (2021). https://doi.org/10.1007/s11044-020-09774-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09774-6

Keywords

Navigation