Skip to main content
Log in

Dynamic modeling and vibration characteristics analysis of flexible-link and flexible-joint space manipulator

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

With the development of space technology, lighter and larger space manipulators will be born, of which flexible characteristics are more obvious. The manipulator vibration caused by the flexibility not only reduces the efficiency of the manipulator but also affects the accuracy of the operation. The flexibility of space manipulator mainly comes from structural flexibility of links and transmission flexibility of harmonic gear reducer in joints. The vibrations generated by these two kinds of flexibility are coupled and transformed mutually, making the dynamics characteristics of space manipulator system complicated. Therefore it is difficult to assess respective effects of these flexibilities on vibrations of the manipulator tip. And the characteristics of integrated vibration of manipulator tip with different link and joint stiffnesses are not very clear. In this paper, the dynamic equations of multi-link multi-DOF flexible manipulator are established. Then, vibration responses of the tip under different elastic modulus, damping and joint stiffness were studied, and vibration characteristics of the tip with both link and joint were also analyzed. Moreover, the effects of motion planning on the vibration of the tip were analyzed. Finally, the vibration characteristics of the manipulator with flexible joints and links are verified by a two-degree-of-freedom manipulator experimental system. Dynamics analysis results presented some useful rules for the path planning and control to suppress the vibration of the flexible space manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Yoshida, K.: Engineering test satellite VII flight experiments for space robot dynamics and control: theories on laboratory test beds ten years ago, now in orbit. Int. J. Robot. Res. 22(5), 321–335 (2003)

    Article  Google Scholar 

  2. Friend, R.B.: Orbital express program summary and mission overview. Proc. of the SPIE Defense and Security Symposium, International Society for Optics and Photonics (2008). Orlando, USA

  3. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014)

    Article  Google Scholar 

  4. Moosavian, S.A.A., Papadopoulos, E.: Free-flying robots in space: an overview of dynamics modeling, planning and control. Robotica 25(05), 537–547 (2007)

    Article  Google Scholar 

  5. Gibbs, G., Sachdev, S.: Canada and the international space station program: overview and status. Acta Astronaut. 51(1), 591–600 (2002)

    Article  Google Scholar 

  6. Kauderer, A.: NASA—Canadarm2 and the mobile servicing system. Internet (2008). http://www.nasa.gov/mission_pages/station/structure/elements/mss.html

  7. Boumans, R., Heemskerk, C.: The European robotic arm for the international space station. Robot. Auton. Syst. 23(1), 17–27 (1998)

    Article  Google Scholar 

  8. Matsueda, T., Kuwao, F., Motohasi, S., Okamura, R.: Development of Japanese experiment module remote manipulator system. In: Proc. of the 3rd International Conference on Artificial Intelligence, Robotics and Automation in Space, Pasadena, USA, pp. 183–186 (1994)

    Google Scholar 

  9. Van Woerkom, P.T.L., Misra, A.: Robotic manipulators in space: a dynamics and control perspective. Acta Astronaut. 38(4), 411–421 (1996)

    Article  Google Scholar 

  10. Vafa, Z., Dubowsky, S.: On the dynamics of manipulators in space using the virtual manipulator approach. In: Proc. of the 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, pp. 579–585 (1987)

    Chapter  Google Scholar 

  11. Liang, B., Xu, Y., Bergerman, M.: Mapping a space manipulator to a dynamically equivalent manipulator. J. Dyn. Syst. Meas. Control. 120(1), 1–7 (1998)

    Article  Google Scholar 

  12. Papadopoulos, E.G.: On the dynamics and control of space manipulators (1990). Diss

  13. Xu, Y., Shum, H.Y.: Dynamic control and coupling of a free-flying space robot system. J. Robotic Syst. 11(7), 573–589 (1994)

    Article  MATH  Google Scholar 

  14. Papadopoulos, E.G.: Path planning for space manipulators exhibiting nonholonomic behavior. In: Proc. of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, USA, pp. 669–675 (1992)

    Chapter  Google Scholar 

  15. Dorsey, J.T., Doggett, W.R., Jones, T.C., King, B.D.: Application of a novel long-reach manipulator concept to asteroid redirect missions. In: Proc. of the AIAA SciTech, Kissimmee, USA (2015)

    Google Scholar 

  16. Sąsiadek, J.: Space robotics and its challenges. In: Aerospace Robotics, pp. 1–8. Springer, Berlin (2013)

    Chapter  Google Scholar 

  17. Dubowsky, S.: Dealing with vibrations in the deployment structures of space robotic systems. In: Proc. of the 5th International Conference on Adaptive Structures, pp. 5–7 (1994)

    Google Scholar 

  18. Singer, N.C.: Residual Vibration Reduction in Computer Controlled Machines (1989)

  19. Carusone, J., Buchan, K.S., D’Eleuterio, G.M.: Experiments in end-effector tracking control for structurally flexible space manipulators. IEEE Trans. Rob. Autom. 9(5), 553–560 (1993)

    Article  Google Scholar 

  20. Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory. 41(7), 749–777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rahimi, H., Nazemizadeh, M.: Dynamic analysis and intelligent control techniques for flexible manipulators: a review. Adv. Robot. 28(2), 63–76 (2014)

    Article  Google Scholar 

  22. Yang, T., Yan, S., Han, Z.: Nonlinear model of space manipulator joint considering time-variant stiffness and backlash. J. Sound Vib. 341, 246–259 (2015)

    Article  Google Scholar 

  23. Talebi, H.A., Patel, R.V., Asmer, H.: Neural network based dynamic modeling of flexible-link manipulators with application to the SSRMS. J. Robotic Syst. 17(7), 385–401 (2000)

    Article  MATH  Google Scholar 

  24. Mohan, A., Saha, S.: A recursive, numerically stable, and efficient simulation algorithm for serial robots with flexible links. Multibody Syst. Dyn. 21(1), 1–35 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sabatini, M., Gasbarri, P., Monti, R., Palmerini, G.B.: Vibration control of a flexible space manipulator during on orbit operations. Acta Astronaut. 73, 109–121 (2012)

    Article  Google Scholar 

  26. Masoudi, R., Mahzoon, M.: Maneuvering and vibrations control of a free-floating space robot with flexible arms. J. Dyn. Syst. Meas. Control. 133(5), 051001 (2011)

    Article  Google Scholar 

  27. Yang, H., Liu, J.: Distributed piezoelectric vibration control for a flexible-link manipulator based on an observer in the form of partial differential equations. J. Sound Vib. 363, 77–96 (2016)

    Article  Google Scholar 

  28. Ulrich, S., Sasiadek, J.Z., Barkana, I.: Modeling and direct adaptive control of a flexible-joint manipulator. J. Guid. Control Dynam. 35(1), 25–39 (2012)

    Article  Google Scholar 

  29. Nanos, K., Papadopoulos, E.G.: On the dynamics and control of flexible joint space manipulators. Control Eng. Pract. 45, 230–243 (2015)

    Article  Google Scholar 

  30. Yu, X.-y., Chen, L.: Modeling and observer-based augmented adaptive control of flexible-joint free-floating space manipulators. Acta Astronaut. 108, 146–155 (2015)

    Article  Google Scholar 

  31. Li, W., Luo, B., Huang, H.: Active vibration control of flexible joint manipulator using input shaping and adaptive parameter auto disturbance rejection controller. J. Sound Vib. 363, 97–125 (2016)

    Article  Google Scholar 

  32. Farid, M., Lukasiewicz, S.A.: Dynamic modeling of spatial manipulators with flexible links and joints. Comput. Struct. 75(4), 419–437 (2000)

    Article  Google Scholar 

  33. Subudhi, B., Morris, A.S.: Dynamic modelling, simulation and control of a manipulator with flexible links and joints. Robot. Auton. Syst. 41(4), 257–270 (2002)

    Article  MATH  Google Scholar 

  34. Al-Bedoor, B., Almusallam, A.: Dynamics of flexible-link and flexible-joint manipulator carrying a payload with rotary inertia. Mech. Mach. Theory. 35(6), 785–820 (2000)

    Article  MATH  Google Scholar 

  35. Vakil, M., Fotouhi, R., Nikiforuk, P.: A new method for dynamic modeling of flexible-link flexible-joint manipulators. J. Vib. Acoust. 134(1), 014503 (2012)

    Article  Google Scholar 

  36. Vakil, M., Fotouhi, R., Nikiforuk, P., Heidari, F.: A study of the free vibration of flexible-link flexible-joint manipulators. P. I. Mech. Eng. C.-J. Mec. 225(6), 1361–1371 (2011)

    Article  Google Scholar 

  37. Korayem, M.H., Rahimi, H., Nikoobin, A.: Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joints. Appl. Math. Model. 36(7), 3229–3244 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yu, S., Elbestawi, M.: Modelling and dynamic analysis of a two-link manipulator with both joint and link flexibilities. J. Sound Vib. 179(5), 839–854 (1995)

    Article  Google Scholar 

  39. Xu, W., Meng, D., Chen, Y., Qian, H., Xu, Y.: Dynamics modeling and analysis of a flexible-base space robot for capturing large flexible spacecraft. Multibody Syst. Dyn. 32(3), 357–401 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Spong, M.W.: Modeling and control of elastic joint robots. J. Dyn. Syst. Meas. Control. 109(4), 310–318 (1987)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61573116, U1613227) and the Basic Research Program of Shenzhen (JCYJ 20160427183553203, JCYJ 2016030110092134 and CKFW 2016033016372515).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenfu Xu or Bin Liang.

Ethics declarations

Conflict of interest and ethical standard statement

MENG, SHE, XU, LU and LIANG declare that they have no proprietary, financial, professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “Dynamic modeling and vibration characteristics analysis of flexible-link and flexible-joint space manipulator”.

The work described has not been submitted elsewhere for publication, in whole or in part, and all the authors listed have approved the manuscript that is enclosed. We have read and have abided by the statement of ethical standards for manuscripts submitted to Multibody System Dynamics.

Appendix: Expressions of matrixes \(\boldsymbol{G}_{jk}\), \(\boldsymbol{\beta} _{jk}\), \(\boldsymbol{M} _{i}\) and \(\boldsymbol{f} _{i}\)

Appendix: Expressions of matrixes \(\boldsymbol{G}_{jk}\), \(\boldsymbol{\beta} _{jk}\), \(\boldsymbol{M} _{i}\) and \(\boldsymbol{f} _{i}\)

The kinematic relationship between two adjacent rigid bodies Bi and Bj and the kinematic relationship between a rigid body (Bi) and a flexible body (Bj) are shown in Figs. 29 and 30, respectively. Matrixes \(\boldsymbol{G}\) and \(\boldsymbol{g}\) have the recursive forms as follows:

$$\begin{aligned} \boldsymbol{G}_{j,k} =& \left \{ \textstyle\begin{array}{l@{\quad}l} \boldsymbol{\varGamma}_{ij}\boldsymbol{G}_{i,k} & \mbox{if } \mathrm{B}_{k} < \mathrm{B}_{j} \\ \boldsymbol{U}_{ij} & \mbox{if } \mathrm{B}_{k} = \mathrm{B}_{j} \\ 0 & \mbox{otherwise} \end{array}\displaystyle \right .\quad \bigl( j,k = 1, \ldots,n; i = i^{ +} ( j ) \bigr) \end{aligned}$$
(21)
$$\begin{aligned} \boldsymbol{g}_{j,k} =& \left \{ \textstyle\begin{array}{l@{\quad}l} \boldsymbol{\varGamma}_{ij}\boldsymbol{g}_{i,k} & \mbox{if } \mathrm{B}_{k} < \mathrm{B}_{j} \\ \boldsymbol{\beta}_{ij} & \mbox{if } \mathrm{B}_{k} = \mathrm{B}_{j} \\ 0 & \mbox{otherwise} \end{array}\displaystyle \right . \quad \bigl( j,k = 1, \ldots,n; i = i^{ +} ( j ) \bigr) \end{aligned}$$
(22)

where

$$\begin{aligned} \boldsymbol{\varGamma}_{ij} =& \left \{ \textstyle\begin{array}{l@{\quad}l} = \left [ \textstyle\begin{array}{c@{\quad}c} \boldsymbol{E}_{3 \times3} & - \tilde{\boldsymbol{r}}_{ij} \\ \boldsymbol{O}_{3 \times3} & \boldsymbol{E}_{3 \times3} \end{array}\displaystyle \right ] \in\mathrm{R}^{6 \times6}, & \bigl(\mbox{if } \mathrm{B}_{j} \mbox{ is rigid body}, i = i^{ +} ( j ) \bigr) \\ = \left [ \textstyle\begin{array}{c@{\quad}c} \boldsymbol{E}_{3 \times3} & - \tilde{\boldsymbol{r}}_{ij} \\ \boldsymbol{O}_{3 \times3} & \boldsymbol{E}_{3 \times3} \\ \boldsymbol{O}_{s \times3} & \boldsymbol{O}_{s \times3} \end{array}\displaystyle \right ] \in\mathrm{R}^{ ( 6 + s ) \times6}, & \bigl(\mbox{if } \mathrm{B}_{j} \mbox{ is flexible body}; i = i^{ +} ( j )\bigr) \end{array}\displaystyle \right . \end{aligned}$$
(23)
$$\begin{aligned} \boldsymbol{\varGamma}_{ij} =& \left \{ \textstyle\begin{array}{l@{\quad}l} \left [ \textstyle\begin{array}{c} \tilde{\boldsymbol{s}}_{j\mathrm{Q}}^{\mathrm{H}_{j}}\boldsymbol{h}_{j} \\ \boldsymbol{h}_{j} \end{array}\displaystyle \right ] \in\mathrm{R}^{6 \times1}, & \bigl(\mbox{if } \mathrm{B}_{j} \mbox{ is rigid body}; i = i^{ +} ( j ) \bigr) \\ \left [ \textstyle\begin{array}{c@{\quad}c} \tilde{\stackrel{\frown}{\boldsymbol{s}}}_{j\mathrm{Q}}^{\mathrm{H}_{j}}\boldsymbol{h}_{j} & - \boldsymbol{\varLambda}_{ji} \\ \boldsymbol{h}_{j} & - \boldsymbol{A}_{0j}\boldsymbol{\varphi}_{ \mathrm{r}}^{\mathrm{Q}} \\ \boldsymbol{O}_{s \times1} & \boldsymbol{E}_{s \times s} \end{array}\displaystyle \right ] \in\mathrm{R}^{ ( 6 + s ) \times ( 1 + s ) }, & \bigl(\mbox{if } \mathrm{B}_{j} \mbox{ is flexible body}; i = i^{ +} ( j ) \bigr) \end{array}\displaystyle \right . \end{aligned}$$
(24)
$$\begin{aligned} \boldsymbol{\beta}_{ij} =& \dot{\boldsymbol{\varGamma}}_{ij} \boldsymbol{V}_{i} + \dot{\boldsymbol{U}}_{ij}\dot{\boldsymbol{y}} _{j}, \quad \bigl( i = i^{ +} ( j ) \bigr) . \end{aligned}$$
(25)

\(\boldsymbol{E}_{m\times n}\) and \(\boldsymbol{O}_{m\times n}\) represent the \(m\times n\) unit matrix and the \(m\times n\) zero matrix, respectively. \(\boldsymbol{r} _{ij}\) represents the relative position between the origin of frame \(O _{i} x _{i} y _{i} z _{i}\) and the origin of frame \(O _{j} x _{j} y _{j} z _{j}\). \(\boldsymbol{s}_{j\mathrm{Q}}^{ \mathrm{H}_{j}}\) is the position vector from the origin of frame \(O _{j} x _{j} y _{j} z _{j}\) to point \(\mathrm{P}_{\mathrm{H}j}\). \(\boldsymbol{h}_{j}\) is the vector of the rotation axis of hinge Hj. \(\boldsymbol{\stackrel{\frown}{s}}_{j\mathrm{Q}}^{\mathrm{H}_{j}}\) is the position vector from point \(O _{j}\) to point \(\stackrel{\frown}{ \mathrm{Q}}_{\mathrm{H}j}\). \(\boldsymbol{A}_{0j}\) represents the orientation of Bj with respect to the inertial frame. The columns of modal matrix \(\boldsymbol{\varphi}_{\mathrm{r}}^{\mathrm{Q}} \in\mathrm{R}^{3 \times s}\) are composed of the deformation modes associated with small rotation variables of hinge definition point \(\mathrm{Q}_{\mathrm{H}j}\). \(\boldsymbol{\varLambda} _{ji}\) is a matrix related to the deformation of a flexible body.

Fig. 29
figure 29

Kinematic relationship between two adjacent rigid bodies

Fig. 30
figure 30

Kinematic relationship between a rigid body and a flexible body

The expressions of generalized mass matrix \(\boldsymbol{M} _{i}\) and force vector \(\boldsymbol{f} _{i}\) are as follows:

$$\begin{aligned} \boldsymbol{M}_{i} =& \left \{ \textstyle\begin{array}{l} \left [ \textstyle\begin{array}{c@{\quad}c} m_{i}\boldsymbol{E}_{3 \times3} & \boldsymbol{O}_{3 \times3} \\ \boldsymbol{O}_{3 \times3} & \boldsymbol{I}_{i} \end{array}\displaystyle \right ] \in\mathrm{R}^{6 \times6}, \quad (\mbox{if }\mathrm{B}_{i} \mbox{ is rigid body} ) \\ \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} ( \sum_{k = 1}^{N} m_{k} ) \boldsymbol{E}_{3 \times3} & - \sum_{k = 1}^{N} m_{k}\tilde{\boldsymbol{s}}_{k} & \boldsymbol{A}_{0i} \sum_{k = 1}^{N} m_{k}\boldsymbol{\varphi}_{\mathrm{t}}^{k} \\ & - \sum_{k = 1}^{N} m_{k}\tilde{\boldsymbol{s}}_{k} \tilde{\boldsymbol{s}}_{k} & \boldsymbol{A}_{0i}\sum_{k = 1}^{N} m_{k}\tilde{\boldsymbol{s}}_{k}\boldsymbol{\varphi}_{\mathrm{t}}^{k} \\ \mathrm{Symmetric} & & \sum_{k = 1}^{N} m_{k} ( \boldsymbol{\varphi}_{\mathrm{t}}^{k} ) ^{\mathrm{T}} \boldsymbol{\varphi}_{\mathrm{t}}^{k} \end{array}\displaystyle \right ] \in\mathrm{R}^{ ( 6 + s ) \times ( 6 + s ) }, \\ \quad (\mbox{if } \mathrm{B}_{i} \mbox{ is flexible body}) \end{array}\displaystyle \right . \end{aligned}$$
(26)
$$\begin{aligned} \boldsymbol{f}_{i} =& \left \{ \textstyle\begin{array}{l@{\quad}l} -\boldsymbol{w}_{i} + \boldsymbol{f}_{i}^{\circ} \in\mathrm{R}^{6 \times1}, & (\mbox{if } \mathrm{B}_{i} \mbox{ is rigid body}) \\ -\boldsymbol{w}_{i} + \boldsymbol{f}_{i}^{\circ} - \boldsymbol{f}_{i}^{\mathrm{u}}, & (\mbox{if } \mathrm{B}_{i} \mbox{ is flexible body}) \end{array}\displaystyle \right . \end{aligned}$$
(27)

where \(m _{i}\) is the mass for rigid body Bi, \(\boldsymbol{I} _{i}\) is the \(3\times 3\) inertia matrix of rigid body Bi. For flexible body Bi, \(N\) is the number of finite element nodes, \(m_{k}\) is the lumped mass at node \(k\), and \(\mathbf{s}_{k}\) is the position vector from the origin of the floating reference frame to node \(k\). The columns of modal matrix \(\boldsymbol{\varphi}_{\mathrm{t}}^{\mathrm{Q}} \in\mathrm{R}^{3 \times s}\) are composed of deformation modes associated with translational displacement coordinates of hinge definition point \(\mathrm{Q}_{\mathrm{H}j}\). \(\boldsymbol{w} _{i}\) is the quadratic velocity term defining the Coriolis force and centrifugal forces, \(\boldsymbol{f}_{i}^{\mathrm{o}}\) is a \(6\times 1\) vector composed of the external forces and torques exerted on Bi. \(\boldsymbol{f} _{i}^{\mathrm{u}}\) is the generalized deformation force of flexible body Bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, D., She, Y., Xu, W. et al. Dynamic modeling and vibration characteristics analysis of flexible-link and flexible-joint space manipulator. Multibody Syst Dyn 43, 321–347 (2018). https://doi.org/10.1007/s11044-017-9611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-017-9611-6

Keywords

Navigation