Skip to main content
Log in

Symbolic multibody methods for real-time simulation of railway vehicles

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this work, recently developed state-of-the-art symbolic multibody methods are tested to accurately model a complex railway vehicle. The model is generated using a symbolic implementation of the principle of virtual power. Creep forces are modeled using a direct symbolic implementation of the standard linear Kalker model. No simplifications, such as base parameter reduction, partial-linearization or lookup tables for contact kinematics, are used. An Implicit–Explicit integration scheme is proposed to efficiently deal with the stiff creep dynamics. Real-time performance is achieved: the CPU time required for a very robust \(1~\text{ms}\) integration time step is 203 μs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Closed loops are opened to parametrize and closed through constraint equations.

  2. In comparison, this method presents the overhead of having to deal with the common atom search. Even using hash tables to do the search, the symbolic processing phase seems to take longer.

  3. Distance from the rotation axis to the contact point along the normal at the contact point.

  4. Including a step of the Newton–Raphson iteration used to project the coordinates.

  5. Single step of the Newton–Raphson iteration.

  6. The tolerance used is \(10^{-6}\), leading to a negligible error of \(\approx 10^{-3}~\text{mm}\) for lengths.

References

  1. Samin, J.C., Fisette, P.: Symbolic Modeling of Multibody Systems. Springer, Dordrecht (2003)

    Book  MATH  Google Scholar 

  2. Plaza, A.: Symbolic Modeling for the Real-Time Simulation of Multibody Systems. Ph.D. Thesis, Public University of Navarre (2016)

  3. Shabana, A.A., Tobaa, M., Sugiyama, H., Zaazaa, K.E.: On the computer formulations of the wheel/rail contact problem. Nonlinear Dyn. 40(2), 169–193 (2005)

    Article  MATH  Google Scholar 

  4. Bozzone, M., Pennestrì, E., Salvini, P.: A lookup table-based method for wheel–rail contact analysis. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 225(2), 127–138 (2011)

    MATH  Google Scholar 

  5. Sugiyama, H., Tanii, Y., Suda, Y., Nishina, M., Komine, H., Miyamoto, T., Doi, H., Chen, H.: Wheel/rail contact geometry on tight radius curved track: simulation and experimental validation. Multibody Syst. Dyn. 25(2), 117–130 (2011)

    Article  Google Scholar 

  6. Escalona, J.L., Aceituno, J.F.: Modeling wheel–rail contact with pre-calculated lookup tables in arbitrary-geometry tracks with irregularities. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V006T10A078. American Society of Mechanical Engineers (2015)

    Google Scholar 

  7. Aceituno, J.F., Escalona, J.L., García-Vallejo, D.: Partially-linearized multibody equations of railroad vehicles on arbitrary tracks for on-board applications. In: ECCOMAS Thematic Conference on Multibody Dynamics 2015, June 29–July 2 (2015)

    Google Scholar 

  8. Iriarte, X., Ros, J., Mata, V., Plaza, A.: Multibody model reduction by parameter elimination. In: ECCOMAS Thematic Conference on Multibody Dynamics 2015, June 29–July 2 (2015)

    Google Scholar 

  9. Ros, J., Iriarte, X., Plaza, A., Mata, V.: Simplification of multibody models by parameter reduction. CoRR (2017). arXiv:1705.10143 [cs.RO]

  10. Ros, J., Arrondo, L., Gil, J., Iriarte, X.: lib_3D_MEC_GiNaC a library for symbolic multibody dynamics

  11. Khalil, W., Kleinfinger, J.F.: Minimum operations and minimum parameters of the dynamic models of tree structure robots. J. Robot. Autom. RA-3(6), 517–526 (1987)

    Article  Google Scholar 

  12. Ros, J., Iriarte, X., Mata, V.: 3D inertia transfer concept and symbolic determination of the base inertial parameters. Mech. Mach. Theory 49, 284–297 (2012)

    Article  Google Scholar 

  13. Ros, J., Plaza, A., Iriarte, X., Aginaga, J.: Inertia transfer concept based general method for the determination of the base inertial parameters. Multibody Syst. Dyn. 34(4), 327–347 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Diez, E.: Nociones de ferrocarril. Breve historia de FEVE (2009). http://www.feve.es

  15. Pombo, J., Ambrósio, J.A.C.: General spatial curve joint for rail guided vehicles: kinematics and dynamics. Multibody Syst. Dyn. 9(3), 237–264 (2003)

    Article  MATH  Google Scholar 

  16. Andersson, E., Berg, M., Stichel, S.: Rail vehicle dynamics-fundamentals and guidelines. KTH Railway Technology (1999)

  17. Shabana, A.A., Zaazaa, K.E., Escalona, J.L., Sany, J.R.: Development of elastic force model for wheel/rail contact problems. J. Sound Vib. 269(1), 295–325 (2004)

    Article  Google Scholar 

  18. Pombo, J., Ambrósio, J., Silva, M.: A new wheel–rail contact model for railway dynamics. Veh. Syst. Dyn. 45(2), 165–189 (2007)

    Article  Google Scholar 

  19. Auciello, J., Meli, E., Falomi, S., Malvezzi, M.: Dynamic simulation of railway vehicles: wheel/rail contact analysis. Veh. Syst. Dyn. 47(7), 867–899 (2009)

    Article  Google Scholar 

  20. Arnold, M.: Simulation algorithms in vehicle system dynamics. Univ., Fachbereich Mathematik und Informatik (2004)

  21. Shabana, A.A., Sany, J.R.: An augmented formulation for mechanical systems with non-generalized coordinates: application to rigid body contact problems. Nonlinear Dyn. 24(2), 183–204 (2001)

    Article  MATH  Google Scholar 

  22. Fisette, P., Péterkenne, J.M., Vaneghem, B., Samin, J.C.: A multibody loop constraints approach for modelling cam/follower devices. Nonlinear Dyn. 22(4), 335–359 (2000)

    Article  MATH  Google Scholar 

  23. Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(4), 247–255 (1982)

    Article  Google Scholar 

  24. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems, Vol. 1: Basic Methods. Allyn & Bacon, Needham Heights (1989)

    Google Scholar 

  25. Kalker, J.J.: A fast algorithm for the simplified theory of rolling contact. Veh. Syst. Dyn. 11(1), 1–13 (1982)

    Article  Google Scholar 

  26. Vollebregt, E.A.H., Wilders, P.: Fastsim2: a second-order accurate frictional rolling contact algorithm. Comput. Mech. 47(1), 105–116 (2011)

    Article  MATH  Google Scholar 

  27. Vollebregt, E.A.H.: Numerical modeling of measured railway creep versus creep-force curves with contact. Wear 314(1), 87–95 (2014). Proceedings of the 9th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Chengdu, 2012

    Article  Google Scholar 

  28. Kalker, J.J.: On the rolling contact of two elastic bodies in the presence of dry friction. Ph.D. Thesis, TU Delft, Delft University of Technology (1967)

  29. Iwnicki, S. (ed.): Handbook of Railway Vehicle Dynamics. Taylor & Francis, London (2006)

    Google Scholar 

  30. Kalker, J.J.: The tangential force transmitted by two elastic bodies rolling over each other with pure creepage. Wear 11(6), 421–430 (1968)

    Article  Google Scholar 

  31. Shen, Z.Y., Hedrick, J.K., Elkins, J.A.: A comparison of alternative creep force models for rail vehicle dynamic analysis. Veh. Syst. Dyn. 12(1–3), 79–83 (1983)

    Article  Google Scholar 

  32. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Arnold, M., Burgermeister, B., Eichberger, A.: Linearly implicit time integration methods in real-time applications: DAEs and stiff ODEs. Multibody Syst. Dyn. 17(2), 99–117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fulton, S.R.: Semi-implicit time differencing. Technical report (2004)

  35. Fisette, P., Postiau, T., Sass, L., Samin, J.C.: Fully Symbolic Generation of Complex Multibody Models (2002)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) [grant numbers IPT-2011-1149-370000 and TRA2014-57609-R]. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Ros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ros, J., Plaza, A., Iriarte, X. et al. Symbolic multibody methods for real-time simulation of railway vehicles. Multibody Syst Dyn 42, 469–493 (2018). https://doi.org/10.1007/s11044-017-9608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-017-9608-1

Keywords

Navigation