Skip to main content

Advertisement

Log in

Multi-disciplinary constrained optimization of wind turbines

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

We describe procedures for the multi-disciplinary design optimization of wind turbines, where design parameters are optimized by maximizing a merit function, subjected to constraints that translate all relevant design requirements. Evaluation of merit function and constraints is performed by running simulations with a parametric high-fidelity aero-servo-elastic model; a detailed cross-sectional structural model is used for the minimum weight constrained sizing of the rotor blade. To reduce the computational cost, the multi-disciplinary optimization is performed by a multi-stage process that first alternates between an aerodynamic shape optimization step and a structural blade optimization one, and then combines the two to yield the final optimum solution. A complete design loop can be performed using the proposed algorithm using standard desktop computing hardware in one-two days. The design procedures are implemented in a computer program and demonstrated on the optimization of multi-MW horizontal axis wind turbines and on the design of an aero-elastically scaled wind tunnel model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anonymous: ECN Blade Optimization Tool BOT. ECN Wind Energy, P.O. Box 1, 1755 ZG Petten, The Netherlands, www.ecn.nl

  2. Lee, K., Joo, W., Kim, K., Lee, D., Lee, K., Park, J.: Numerical optimization using improvement of the design space feasibility for Korean offshore horizontal axis wind turbine blade. In: European Wind Energy Conference & Exhibition EWEC 2007, Milan, Italy, 7–10 May (2007)

    Google Scholar 

  3. Maalawi, K.Y., Badr, M.A.: A practical approach for selecting optimum wind rotors. Renew. Energy 28, 803–822 (2003)

    Article  Google Scholar 

  4. Méndez, J., Greiner, D.: Wind blade chord and twist angle optimization using genetic algorithms. In: Fifth International Conference on Engineering Computational Technology, Las Palmas de Gran Canaria, Spain, 12–15 September (2006)

    Google Scholar 

  5. Xudong, W., Shen, W.Z., Zhu, W.J., Sørensen, J.N., Jin, C.: Blade optimization for wind turbines. In: European Wind Energy Conference & Exhibition EWEC 2009, Marseille, France, 16–19 March (2009)

    Google Scholar 

  6. Jureczko, M., Pawlak, M., Mezyk, A.: Optimization of wind turbine blades. J. Mater. Process. Technol., 167, 463–471 (2005)

    Google Scholar 

  7. Laird, D.: NuMAD: blade structural analysis. In: 2008 Wind Turbine Blade Workshop, Sandia National Laboratories, Albuquerque, NM, USA, 12–14 May (2008)

    Google Scholar 

  8. Fuglsang, P., Madsen, H.A.: Optimization method for wind turbine rotors. J. Wind Eng. Ind. Aerodyn. 80, 191–206 (1999)

    Article  Google Scholar 

  9. Fuglsang, L.: Integrated design of turbine rotors. In: European Wind Energy Conference & Exhibition EWEC 2008, Brussels, Belgium, 31 March–3 April (2008)

    Google Scholar 

  10. Anonymous. RotorOpt perfects rotor design. LM Glasfiber News Letter, September, p. 5 (2007)

  11. Duineveld, N.P.: FOCUS5: an integrated wind turbine design tool. In: 2008 Wind Turbine Blade Workshop, Sandia National Laboratories, Albuquerque, NM, USA, 12–14 May (2008)

    Google Scholar 

  12. Jonkman, J.: NREL structural and aeroelastic codes. In: 2008 Wind Turbine Blade Workshop, Sandia National Laboratories, Albuquerque, NM, USA, 12–14 May (2008)

    Google Scholar 

  13. Anonymous: Wind Turbine Generator Systems—Part 1: Safety Requirements, Ed. 2.0. International Standard IEC 61400-1 (1999)

  14. Anonymous: Wind Turbines—Part 2: Design Requirements for Small Wind Turbines, Ed. 2.0. International Standard IEC 61400-2 (2006)

  15. Manwell, J.F., Mc Gowan, J.G., Rogers, A.L.: Wind Energy Explained—Theory, Design and Application. Wiley, Chichester (2002)

    Book  Google Scholar 

  16. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  17. Biava, M.: RANS Computations of Rotor/Fuselage Interactional Aerodynamics. Ph.D. thesis, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Milano, Italy (2007)

  18. Simpson, T.W., Peplinski, J.D., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: survey and recommendations. Eng. Comput. 17, 129–150 (2001)

    Article  MATH  Google Scholar 

  19. Anonymous: Wind Turbine Generator System—Part 11: Acoustic Noise Measurement Techniques, Ed. 2.1. International Standard IEC 61400-11 (2006)

  20. Anonymous: Guideline for the Certification of Wind Turbines, Ed. 2010. Germanischer Lloyd Industrial Services GmbH, Renewables Certification, Brooktorkai 18, 20457 Hamburg, Germany (2010)

  21. Philippidis, T.P., Vassilopoulos, A.P.: Complex stress state effect on fatigue life of GRP laminates. Part I, experimental. Int. J. Fatigue 24, 813–823 (2002)

    Article  Google Scholar 

  22. Philippidis, T.P., Vassilopoulos, A.P.: Complex stress state effect on fatigue life of GRP laminates. Part II, theoretical formulation. Int. J. Fatigue 24, 825–830 (2002)

    Article  Google Scholar 

  23. Anonymous: Matlab. The MathWorks Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA. www.mathworks.com

  24. Anonymous: Noesis Optimus. Noesis Solutions NV, Interleuvenlaan 68, B-3001 Leuven, Belgium. www.noesissolutions.com

  25. Giavotto, V., Borri, M., Mantegazza, P., Ghiringhelli, G.: Anisotropic beam theory and applications. Comput. Struct. 16, 403–413 (1983)

    Article  MATH  Google Scholar 

  26. Bauchau, O.A., Bottasso, C.L., Nikishkov, Y.G.: Modeling rotorcraft dynamics with finite element multibody procedures. Math. Comp. Model. 33, 1113–1137 (2001)

    Article  MATH  Google Scholar 

  27. Bottasso, C.L., Bauchau, O.A., Cardona, A.: Time-step-size-independent conditioning and sensitivity to perturbations in the numerical solution of index three differential algebraic equations. SIAM J. Sci. Comput. 29, 397–414 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Peters, D.A., He, C.J.: Finite state induced flow models—Part II: three-dimensional rotor disk. J. Aircr. 32, 323–33 (1995)

    Article  Google Scholar 

  29. Powles, S.R.J.: The effects of tower shadow on the dynamics of a horizontal-axis wind turbine. Wind Eng. 7, 26–42 (1983)

    Google Scholar 

  30. Bottasso, C.L., Bauchau, O.A.: On the design of energy preserving and decaying schemes for flexible, nonlinear multibody systems. Comput. Methods Appl. Mech. Eng. 169, 61–79 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Bauchau, O.A., Bottasso, C.L., Trainelli, L.: Robust integration schemes for flexible multibody systems. Comput. Methods Appl. Mech. Eng. 192, 395–420 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Bottasso, C.L., Croce, A., Riboldi, C.E.D., Nam, Y.: Power curve tracking in the presence of a tip speed constraint. Renew. Energy (2009, under review)

  33. Bottasso, C.L., Croce, A.: Power curve tracking with tip speed constraint using LQR regulators. Scientific Report DIA-SR 09-04, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, March (2009)

  34. Bottasso, C.L., Croce, A.: Advanced control laws for variable-speed wind turbines and supporting enabling technologies. Scientific Report DIA-SR 09-01, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Milano, Italy, January (2009)

  35. Bottasso, C.L., Croce, A.: Cascading Kalman observers of structural flexible and wind states for wind turbine control. Scientific Report DIA-SR 09-02, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Milano, Italy, January (2009)

  36. Bottasso, C.L., Campagnolo, F., Croce, A.: Development of a wind tunnel model for supporting research on aero-elasticity and control of wind turbines. In: 13th International Conference on Wind Engineering ICWE13, Amsterdam, The Netherlands (2011)

    Google Scholar 

  37. Althaus, D.: Profilpolaren Für Den Modellflug. Neckar-Verlag, Villingen-Schwenningen (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Bottasso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottasso, C.L., Campagnolo, F. & Croce, A. Multi-disciplinary constrained optimization of wind turbines. Multibody Syst Dyn 27, 21–53 (2012). https://doi.org/10.1007/s11044-011-9271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9271-x

Keywords

Navigation