Skip to main content
Log in

Rheological constitutive equations for glassy polymers, based on trap phenomenology

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The present work comprises an upgraded version of a previous research of ours, referring to the evaluation of viscoelastic functions in a broad frequency and time scale. Our analysis is based on the assumption that the polymeric structure consists of an ensemble of meso-regions, with their own energy barrier, which follows a distribution. Through a cooperative process, the meso-regions are linked to each other, and perform rearrangements by changing their positions. The time-dependent behavior is controlled by the distribution energy barriers. In the present analysis, the distribution function will be evaluated by the experimental data of loss modulus. Hereafter, the viscoelastic functions can be evaluated, with further parameters. In addition, the temperature dependence of storage and loss modulus at a constant frequency can be described within the context of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams, G., Gibbs, J.H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43(1), 139–146 (1965)

    Article  Google Scholar 

  • Alves, N.M., Gomez Ribelles, J.L., Gomez Tejedor, J.A., Mano, J.F.: Viscoelastic behavior of poly(methyl methacrylate) networks with different cross-linking degrees. Macromolecules 37, 3735–3744 (2004)

    Article  Google Scholar 

  • Bouchaud, J.P., Cugliandolo, L.F., Kurchan, J., Mezard, M.: Spin Glasses and Random Fields. World Scientific, Singapore (1998)

    Google Scholar 

  • Buchenau, U.: Mechanical relaxation in glasses and at the glass transition. Phys. Rev. B 63, 104203 (2001)

    Article  Google Scholar 

  • Derrida, B.: Random-energy model: limit of a family of disordered models. Phys. Rev. Lett. 45, 79 (1980)

    Article  MathSciNet  Google Scholar 

  • Drozdov, A.D.: Mechanics of Viscoelastic Solids. Wiley, New York (1998)

    MATH  Google Scholar 

  • Drozdov, A.D., Christiansen, J.deC.: Cyclic viscoplasticity of thermoplastic elastomers. Acta Mech. 194, 47–65 (2007)

    Article  Google Scholar 

  • Drozdov, A.D., Al-Mulla, A., Gupta, R.K.: Thermo-viscoelastic response of polycarbonate reinforced with short glass fibers. Macromol. Theory Simul. 12, 354–366 (2003)

    Article  Google Scholar 

  • Drozdov, A.D., Hog Lejre, A.-L., Christiansen, J.deC.: Viscoelasticity, viscoplasticity and creep failure of polypropylene/clay nanocomposites. Compos. Sci. Technol. 69, 2596–2603 (2009)

    Article  Google Scholar 

  • Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)

    Google Scholar 

  • Fulcher, G.A.: J. Am. Chem. Soc. 8, 339 (1925)

    Google Scholar 

  • Green, M.S., Tobolsky, A.V.: A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 14, 80–92 (1946)

    Article  Google Scholar 

  • Katicha, S.W., Flintsch, G.W.: Fractional viscoelastic models: master curve construction, interconversion, and numerical approximation. Rheol. Acta 51, 675–689 (2012). https://doi.org/10.1007/s00397-012-0625-y

    Article  Google Scholar 

  • Katsourinis, S., Kontou, E.: Comparing interconversion methods between linear viscoelastic material functions. Mech. Time-Depend. Mater. 22(3), 401–419 (2018). https://doi.org/10.1007/s11043-017-9363-y

    Article  Google Scholar 

  • Kauzmann, W.: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43(2), 219–256 (1948)

    Article  Google Scholar 

  • Kontou, E., Katsourinis, S.: Application of a fractional model for simulation of the viscoelastic functions of polymers. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/APP.43505

    Article  Google Scholar 

  • Ktitorov, S.A.: Determination of the relaxation time distribution from the dielectric losses. Tech. Phys. Lett. 29(11), 956–958 (2003)

    Article  Google Scholar 

  • Matsuoka, S.: Relaxation Phenomena in Polymers. Hanser Publishers, New York (1992)

    Google Scholar 

  • Monthus, C., Boucheaud, J.P.: Models of traps and glass phenomenology. J. Phys. A, Math. Gen. 29, 3847–3869 (1996)

    Article  Google Scholar 

  • Park, S.W., Schapery, R.A.: Methods of interconversion between linear viscoelastic material functions. Part I. A numerical method based on Prony series. Int. J. Solids Struct. 36, 1653–1675 (1999)

    Article  Google Scholar 

  • Plazek, D.J., Ragupathi, N., Orborn, S.J.: Determination of dynamic storage and loss compliance from creep data. J. Rheol. 23, 477–488 (1979)

    Article  Google Scholar 

  • Schapery, S.A.: Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech. Time-Depend. Mater. 1, 209–240 (1997)

    Article  Google Scholar 

  • Sollich, P.: Rheological constitutive equations for model of soft glassy materials. Phys. Rev. E 58, 738 (1998)

    Article  Google Scholar 

  • Spathis, G., Kontou, E.: A viscoelastic model for predicting viscoelastic functions of polymers and polymer nanocomposites. Int. J. Solids Struct. 141–142, 102–109 (2018). https://doi.org/10.1016/j.ijsolstr.2018.02.015

    Article  Google Scholar 

  • Spathis, G., Katsourinis, S., Kontou, E.: Evaluation of fundamental viscoelastic functions by a non-linear viscoelastic model. Polym. Eng. Sci. 57, 1389–1395 (2017). https://doi.org/10.1002/pen.24525

    Article  Google Scholar 

  • Tanaka, F., Edwards, S.F.: Viscoelastic properties of physically cross-linked networks, transient network theory. Macromolecules 25, 1516–1523 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kontou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spathis, G., Kontou, E. Rheological constitutive equations for glassy polymers, based on trap phenomenology. Mech Time-Depend Mater 24, 73–83 (2020). https://doi.org/10.1007/s11043-018-09407-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-018-09407-8

Keywords

Navigation