Skip to main content
Log in

A finite element model for shape memory behavior

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This paper deals with a finite element implementation concerning the shape memory behavior. Shape memory behavior is usually driven by temperature changes. This model allows the simulation of problems integrating complex mechanical loading effects under random temperature variations. According to the relationship between stress and strain, the shape fixation during cooling phases and the memory effect during heating phase are modelised through a hereditary behavior needing incremental formulation developments. The step by step process introduces an additional fixed stress. Simulations request, for complex geometries including boundary conditions, a finite element approach. Thermodynamic developments are presented in order to define energetic balance and dissipations. In this paper, we propose to generalize this dependence of elastic modulus variations. A formulation for random mechanical loading and temperature variations is proposed. An experimental validation is proposed about shape memory alloy polymer DP5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson, E.R., Lake, M.S., Munshi, N.A., Gall, K.: Shape memory mechanics of an elastic memory composite resin. J. Intell. Mater. Syst. Struct. 14, 623–632 (2003)

    Article  Google Scholar 

  • Bazant, Z.P.: Thermodynamics of solidifying or melting viscoelastic material. J. Eng. Mech. 105, 933–952 (1979)

    Google Scholar 

  • Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000)

    Article  Google Scholar 

  • Helm, D., Haupt, P.: Shape memory behaviour: modelling within continuum thermomechanics. Int. J. Solids Struct. 40, 827–849 (2003)

    Article  MATH  Google Scholar 

  • Feninat, F.E.L., Laroche, G., Fiset, M., Mantovani, D.: Shape memory materials for biomedical applications. Adv. Eng. Mater. 4, 91–104 (2002)

    Article  Google Scholar 

  • Gall, K., Sehitoglu, H.: The role of texture in tension-compression asymmetry in polycrystalline NiTi. Int. J. Plast. 15, 69–92 (1999)

    Article  MATH  Google Scholar 

  • Gall, K., Mikulas, M., Munshi, N.A.: Carbon fiber reinforced shape memory polymer composites. J. Intell. Mater. Syst. Struct. 11, 877–886 (2000)

    Google Scholar 

  • Gandhi, M.V., Thompson, B.S.: Smart Materials and Structures. Chapman & Hall, London (1992)

    Google Scholar 

  • Ghazlan, G., Caperaa, S., Petit, C.: An incremental formulation for the linear analysis of thin viscoelastic structures. Int. J. Numer. Method Eng. 38, 3315–3333 (1995)

    Article  MATH  Google Scholar 

  • Gril, J.: Une modélisation du comportement hygro-rhéologique du bois à partir de sa microstructure. PHd thesys, Polytechnic school, University of Paris VI, Paris (1988)

  • Helm, D., Haupt, P.: Shape memory behavior: modeling within continuum thermomechanics. Int. J. Solids Struct. 40, 827–849 (2003)

    Article  MATH  Google Scholar 

  • Tobushi, H., Okumura, K., Hayashi, S., Itp, N.: Thermomechanical consitutive model of shape memory polymer. Mech. Mater. 33, 545–554 (2001)

    Article  Google Scholar 

  • Husson, J.M., Dubois, F., Sauvat, N.: Modélisation du comportement mécanosorptif des éléments en bois. Eur. J. Civil Eng. 1181–1193 (2008)

  • Husson, J.M., Dubois, F., Sauvat, N.: Elastic response in wood under moisture content variations: analytic development. Mech. Time-Depend. Mater. doi:10.1007/s11043-009-9104-y. MTDM149.2 (2009)

    Google Scholar 

  • Liu, Y., Gall, K., Dunn, M.L., McCluskey, P.: Thermomechanics of shape memory polymer nanocomposites. Mech. Mater. 36, 929–940 (2004)

    Article  Google Scholar 

  • Liu, Y., Gal, K., Dunn, M.L., Greenberg, A.R., Diani, J.: Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling. Int. J. Plast. 22, 279–313 (2006)

    Article  MATH  Google Scholar 

  • Otsuka, K., Wayman, C.M.: Shape Memory Materials. Cambridge University Press, New York (1998)

    Google Scholar 

  • Ni, Q.-Q., Zhang, C.-S., Fu, Y., Dai, G., Kimura, T.: Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos. Struct. 81, 176–184 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Dubois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Husson, J.M., Dubois, F. & Sauvat, N. A finite element model for shape memory behavior. Mech Time-Depend Mater 15, 213–237 (2011). https://doi.org/10.1007/s11043-011-9134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-011-9134-0

Keywords

Navigation