Skip to main content
Log in

An empirical comparison of interaction styles for map interfaces in immersive virtual environments

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Geographical Information Systems (GIS) can be visualized using immersive technologies like Virtual Reality (VR). Before using this kind of technologies it is required to explore which interactions are affordable, efficient and satisfactory from the users’ point of view. The purpose of this work is to provide insight on how to design efficient and natural interaction on GIS VR interfaces. This study presents a within-subjects comparative study that assesses the usability and performance of two popular interaction strategies: body-based interaction and device based interaction. In body-based interaction, participants use their hands and head orientation to control the VR map. In the second case, users interact with the Oculus Touch controller. Thirty two users participated in an experiment whose results suggest that interacting with the controller improves performance of the selection task, in terms of time spent and error rate. Also, the results show a preference of users for the controller in terms of perceived usability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adhikarla VK, Barsi A, Singhal D, Kovács PT, Technology I (2014) Freehand interaction with large scale 3D map data. In: 3DTV-conference: the true vision - capture, transmission and display of 3D video (3DTV-CON). IEEE, pp 1–4. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6874711

  2. Anderson A, Weng Z (1999) VRDD: applying virtual reality visualization to protein docking and design. J Mol Graph Model 17 (3-4):180–186. https://doi.org/10.1016/S1093-3263(99)00029-7

    Article  Google Scholar 

  3. Argelaguet F, Andujar C (2013) A survey of 3d object selection techniques for virtual environments. Comput Graph 37(3):121–136

    Article  Google Scholar 

  4. Beck S, Kunert A, Kulik A, Froehlich B (2013) Immersive group-to-group telepresence. IEEE Trans Visual Comput Graphics 19(4):616–625. https://doi.org/10.1109/TVCG.2013.33. http://ieeexplore.ieee.org/document/6479190/

    Article  Google Scholar 

  5. Beheshti E, Devender AV, Horn MS (2012) Touch, click, navigate : comparing tabletop and desktop interaction for map navigation tasks. In: Proceedings of the 2012 ACM international conference on interactive tabletops and surfaces, pp 205–213. https://doi.org/10.1145/2396636.2396669. http://doi.acm.org/10.1145/2396636.2396669

  6. Bowman DA (1997) Interaction techniques for immersive virtual environments: design, evaluation, and application. Methodology 98:37–53. https://doi.org/10.1006/jvlc.1998.0111. http://people.cs.vt.edu/~bowman/papers/hcic.pdf

    Google Scholar 

  7. Bowman DA, Kruijff E, LaViola JJ Jr, Poupyrev I (2001) An introduction to 3-d user interface design. Presence: Teleoperators & Virtual Environments 10(1):96–108

    Article  Google Scholar 

  8. Brooke J (1996) SUS - a quick and dirty usability scale. Usability Evaluation in Industry 189(194):4–7. https://doi.org/10.1002/hbm.20701. http://hell.meiert.org/core/pdf/sus.pdf

    Google Scholar 

  9. Büschel W, Chen J, Dachselt R, Drucker S, Dwyer T, Görg C, Isenberg T, Kerren A, North C, Stuerzlinger W (2018) Interaction for immersive analytics. In: Immersive analytics. Springer, pp 95–138

  10. Chandler T, Cordeil M, Czauderna T, Dwyer T, Glowacki J, Goncu C, Klapperstueck M, Klein K, Marriott K, Schreiber F et al (2015) Immersive analytics. In: 2015 Big data visual analytics (BDVA). IEEE, pp 1–8

  11. Cordeil M, Cunningham A, Dwyer T, Thomas BH, Marriott K (2017) ImAxes: immersive axes as embodied affordances for interactive multivariate data visualisation. In: Proceedings of the 30th annual ACM symposium on user interface software and technology - UIST ’17 (August). https://doi.org/10.1145/3126594.3126613. http://dl.acm.org/citation.cfm?doid=3126594.3126613, pp 71–83

  12. Donalek C, Djorgovski SG, Cioc A, Wang A, Zhang J, Lawler E, Yeh S, Mahabal A, Graham M, Drake A, Davidoff S, Norris JS, Longo G (2014) Immersive and collaborative data visualization using virtual reality platforms. In: 2014 IEEE international conference on big data immersive. https://doi.org/10.1109/BigData.2014.7004282, pp 609–614

  13. Ferrand G, English J, Irani P (2016) 3D visualization of astronomy data cubes using immersive displays, pp 1–8. arXiv:1607.08874

  14. Giannopoulos I, Komninos A, Garofalakis J (2017) Natural interaction with large map interfaces in VR. Proceedings of the 21st Pan-Hellenic Conference on Informatics Part F1325. https://doi.org/10.1145/3139367.3139424

  15. Hurter C, Riche NH, Drucker SM, Cordeil M, Alligier R, Vuillemot R (2018) FiberClay: sculpting three dimensional trajectories to reveal structural insights. IEEE Trans Visual Comput Graph. https://doi.org/10.1109/TVCG.2018.2865191

  16. Kageyama A, Tamura Y, Sato T (2000) Visualization of vector field by virtual reality. Progress of Theoretical Physics Supplement 138:665–673

    Article  Google Scholar 

  17. Kim D, Seo D, Yoo B, Ko H (2017) Points of interest density based zooming interface for map exploration on smart glass. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10273:208–216. https://doi.org/10.1007/978-3-319-58521-5. http://link.springer.com/10.1007/978-3-319-58521-5

    Article  Google Scholar 

  18. Kwon OH, Muelder C, Lee K, Ma KL (2016) A study of layout, rendering, and interaction methods for immersive graph visualization. IEEE Trans Vis Comput Graph 22(7):1802–1815. https://doi.org/10.1109/TVCG.2016.2520921

    Article  Google Scholar 

  19. Lazar J, Feng JH, Hochheiser H (2010) Research methods in human-computer interaction. Wiley, New York. http://biblioteca.uc3m.es/uhtbin/cgisirsi/x/SIRSI/0/5?searchdata1=%5EC606216

    Google Scholar 

  20. Lv Z, Li X, Li W (2017) Virtual reality geographical interactive scene semantics research for immersive geography learning. Neurocomputing 254:1339–1351. https://doi.org/10.1016/j.neucom.2016.07.078

    Article  Google Scholar 

  21. Marriott K, Chen J, Hlawatsch M, Itoh T, Nacenta MA, Reina G, Stuerzlinger W (2018) Chap. immersive analytics: time to reconsider the value of 3D for information visualisation. Springer, Berlin, pp 25–55

    Book  Google Scholar 

  22. Mendes D, Caputo FM, Giachetti A, Ferreira A, Jorge J (2018) A survey on 3D virtual object manipulation: from the desktop to immersive virtual environments. Comput Graph Forum 00(00):1–25. https://doi.org/10.1111/cgf.13390

    Article  Google Scholar 

  23. Mine MR (1995) Virtual environment interaction techniques. UNC Chapel Hill CS Dept

  24. Muhanna MA (2015) Virtual reality and the cave: taxonomy, interaction challenges and research directions. Journal of King Saud University-Computer and Information Sciences 27(3):344–361

    Article  Google Scholar 

  25. Oculus Developer: OculusTouchController @ developer.oculus.com. https://developer.oculus.com/documentation/unity/latest/concepts/unity-ovrinput/

  26. Pahud M, Hinckley K, Iqbal S, Sellen A, Buxton B (2013) Toward compound navigation tasks on mobiles via spatial manipulation. In: Proceedings of the 15th international conference on human-computer interaction with mobile devices and services - MobileHCI ’13, p 113. https://doi.org/10.1145/2493190.2493210. http://dl.acm.org/citation.cfm?doid=2493190.2493210

  27. Poupyrev I, Ichikawa T, Weghorst S, Billinghurst M (1998) Egocentric object manipulation in virtual environments: empirical evaluation of interaction techniques. In: Computer graphics forum, vol 17. Wiley Online Library, pp 41–52

  28. Qian Y, Teather RJ (2017) The eyes don’t have it: an empirical comparison of head-based and eye-based selection in virtual reality (17), 1–8. https://doi.org/10.1145/3131277.3132182. http://www.csit.carleton.ca/~rteather/pdfs/sui17b.pdf

  29. Rädle R, Jetter HC, Müller J, Reiterer H (2014) Bigger is not always better : display size, performance, and task load during peephole map navigation. In: Proceedings of the 32nd annual ACM conference on human factors in computing systems, pp 4127–1436. https://doi.org/10.1145/2556288.2557071

  30. Rauschert I, Sharma R, Fuhrmann S, Maceachren A, Wang H (2002) Designing a human-centered, Multimodal GIS Interface to Support Emergency Management, pp 2–7

  31. Santos-Torres A, Zarraonandia T, Díaz P, Aedo I (2018) Exploring interaction mechanisms for map interfaces in virtual reality environments. In: Proceedings of the XIX international conference on human computer interaction. ACM, p 7

  32. Slater M, Usoh M (1994) Body centred interaction in immersive virtual environments. Artificial Life and Virtual Reality 1(1994):125–148

    Google Scholar 

  33. Souza D, Dias P, Santos BS (2014) Choosing a selection technique for a virtual environment. In: International conference on virtual, augmented and mixed reality. Springer, pp 215–225

  34. Usher W, Klacansky P, Federer F, Bremer PT, Knoll A, Yarch J, Angelucci A, Pascucci V (2018) A virtual reality visualization tool for neuron tracing. IEEE Trans Visual Comput Graph 24(1):994–1003

    Article  Google Scholar 

  35. Yang Y, Dwyer T, Jenny B, Marriott K, Cordeil M, Chen H (2019) Origin-destination flow maps in immersive environments. IEEE Trans Visual Comput Graph 25(1):693–703

    Article  Google Scholar 

  36. Yang Y, Jenny B, Dwyer T, Marriott K, Chen H, Cordeil M (2018) Maps and globes in virtual reality. Computer Graphics Forum 37(3):427–438. https://doi.org/10.1111/cgf.13431

    Article  Google Scholar 

  37. Zarraonandia T, Díaz P, Montero A, Aedo I (2016) Exploring the benefits of immersive end user development for virtual reality. In: International conference on ubiquitous computing and ambient intelligence. Springer, pp 450–462

  38. Zhang S, Demiralp C, Keefe DF, Dasilva M, Laidlaw DH, Greenberg BD, Deisboeck TS (2001) An immersive virtual environment for DT-MRI volume visualization applications: a case study. In: Proceedings Visualization, 2001. VIS’01. IEEE, pp 437–584

Download references

Acknowledgments

This work is supported by the project PACE funded by the Spanish Ministry of Economy, Industry and Competitiveness (TIN2016-77690-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Santos-Torres.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-Torres, A., Zarraonandia, T., Díaz, P. et al. An empirical comparison of interaction styles for map interfaces in immersive virtual environments. Multimed Tools Appl 79, 35717–35738 (2020). https://doi.org/10.1007/s11042-020-08709-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08709-9

Keywords

Navigation