Skip to main content
Log in

Novel correspondence-based approach for consistent human skeleton extraction

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel base-points-driven shape correspondence (BSC) approach to extract skeletons of articulated objects from 3D mesh shapes. The skeleton extraction based on BSC approach is more accurate than the traditional direct skeleton extraction methods. Since 3D shapes provide more geometric information, BSC offers the consistent information between the source shape and the target shapes. In this paper, we first extract the skeleton from a template shape such as the source shape automatically. Then, the skeletons of the target shapes of different poses are generated based on the correspondence relationship with source shape. The accuracy of the proposed method is demonstrated by presenting a comprehensive performance evaluation on multiple benchmark datasets. The results of the proposed approach can be applied to various applications such as skeleton-driven animation, shape segmentation and human motion analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aflalo Y, Dubrovina A, Kimmel R (2013) Spectral generalized multi-dimensional scaling. arXiv preprint arXiv:13112187

  2. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications

  3. Anguelov D, Srinivasan P, Koller D, Thrun S, Rodgers J, Scape DJ (2005) Shape completion and animation of people. ACM Trans Graph 3:408–416

    Article  Google Scholar 

  4. Au OK-C, Tai C-L, Chu H-K, Cohen-Or D, Lee T-Y (2008) Skeleton extraction by mesh contraction. ACM Trans Graph 3:44

    Google Scholar 

  5. Bandouch J, Engstler F, Beetz M (2008) Accurate human motion capture using an ergonomics-based anthropometric human model. In: Articulated motion and deformable objects. Springer 248–258

  6. Bandouch J, Jenkins OC, Beetz M (2012) A self-training approach for visual tracking and recognition of complex human activity patterns. Int J Comput Vis 99(2):166–189

    Article  MathSciNet  Google Scholar 

  7. Baran I, Popović J (2007) Automatic rigging and animation of 3d characters. ACM Trans Graph 3:72

    Article  Google Scholar 

  8. Berretti S, Werghi N, Del Bimbo A, Pala P (2013) Matching 3D face scans using interest points and local histogram descriptors. Comput Graph 37(5):509–525

    Article  Google Scholar 

  9. Bronstein MM, Kokkinos I (2010) Scale-invariant heat kernel signatures for non-rigid shape recognition. IEEE Conf Comput Vis Pattern Recognit. IEEE 1704–1711

  10. Chaaraoui AA, Climent-Pérez P, Flórez-Revuelta F (2013) Silhouette-based human action recognition using sequences of key poses. Pattern Recogn Lett 34(15):1799–1807. doi:10.1016/j.patrec.2013.01.021

    Article  Google Scholar 

  11. Coifman RR, Lafon S (2006) Diffusion maps. Appl Comput Harmon Anal 21(1):5–30. doi:10.1016/j.acha.2006.04.006

    Article  MathSciNet  MATH  Google Scholar 

  12. Cornea ND, Demirci MF, Silver D, Shokoufandeh A, Dickinson SJ, Kantor PB (2005) 3D object retrieval using many-to-many matching of curve skeletons. In: Shape modeling and applications. Int Conf IEEE 366–371

  13. Cornea ND, Silver D, Min P (2007) Curve-skeleton properties, applications, and algorithms. IEEE Trans Vis Comput Graph 13(3):530–548. doi:10.1109/TVCG.2007.1002

    Article  Google Scholar 

  14. Deutscher J, Reid I (2005) Articulated body motion capture by stochastic search. Int J Comput Vis 61(2):185–205

    Article  Google Scholar 

  15. Dey TK, Li K, Luo C, Ranjan P, Safa I, Wang Y (2010) Persistent heat signature for pose‐oblivious matching of incomplete models. Comput Graphics Forum 5:1545–1554, Wiley Online Library

    Article  Google Scholar 

  16. Eldar Y, Lindenbaum M, Porat M, Zeevi YY (1997) The farthest point strategy for progressive image sampling. IEEE Trans Image Proc Publ IEEE Signal Proc Soc 6(9):1305–1315. doi:10.1109/83.623193

    Article  Google Scholar 

  17. Golovinskiy A, Funkhouser T (2009) Consistent segmentation of 3D models. Comput Graph 33(3):262–269

    Article  Google Scholar 

  18. Hahmann S, Belyaev A, Busé L, Elber G, Mourrain B, Rössl C (2008) Shape interrogation. In: Shape analysis and structuring. Springer 1–51

  19. Jia T, Wang K, Wu Z, Zhao J, Xu P, Liu C, Zhou M (2014) Isometric shape matching based on the geodesic structure and minimum cost flow. In: Cyberworlds (CW), 2014 International Conference on. 122–129. doi:10.1109/CW.2014.25

  20. Jiang W, Xu K, Cheng Z-Q, Martin RR, Dang G (2013) Curve skeleton extraction by coupled graph contraction and surface clustering. Graph Model 75(3):137–148

    Article  Google Scholar 

  21. Kimmel R, Sethian JA (1998) Computing geodesic paths on manifolds. Proc Natl Acad Sci 95(15):8431–8435

    Article  MathSciNet  MATH  Google Scholar 

  22. Kin‐Chung Au O, Tai CL, Cohen‐Or D, Zheng Y, Fu H (2010) Electors voting for fast automatic shape correspondence. Comput Graphics Forum 2:645–654, Wiley Online Library

    Article  Google Scholar 

  23. Kravtsov D, Fryazinov O, Adzhiev V, Pasko A, Comninos P (2014) Controlled metamorphosis between skeleton‐driven animated polyhedral meshes of arbitrary topologies. Comput Graphics Forum 1:64–72, Wiley Online Library

    Article  Google Scholar 

  24. Lafon SS (2004) Diffusion maps and geometric harmonics. Ph.D. Dissertation, Yale University, May 2004

  25. Le BH, Deng Z (2014) Robust and accurate skeletal rigging from mesh sequences. ACM Trans Graph 33(4):84

    Article  Google Scholar 

  26. Li X, Woon TW, Tan TS, Huang Z Decomposing polygon meshes for interactive applications. In: Proceedings of the 2001 symposium on Interactive 3D graphics, 2001. ACM 35–42

  27. Lian Z, Godil A, Bustos B, Daoudi M, Hermans J, Kawamura S, Kurita Y, Lavoué G, Van Nguyen H, Ohbuchi R (2011) SHREC’11 track: shape retrieval on non-rigid 3D watertight meshes. 3DOR 11:79–88

  28. Ma J, Choi S (2014) Kinematic skeleton extraction from 3D articulated models. Comput Aided Des 46:221–226

    Article  Google Scholar 

  29. Mahmoudi M, Sapiro G (2009) Three-dimensional point cloud recognition via distributions of geometric distances. Graph Model 71(1):22–31

    Article  Google Scholar 

  30. Ovsjanikov M, Mérigot Q, Mémoli F, Guibas L (2010) One point isometric matching with the heat kernel. Comput Graphics Forum 29(5):1555–1564. doi:10.1111/j.1467-8659.2010.01764.x

    Article  Google Scholar 

  31. Reuter M, Wolter F-E, Peinecke N (2006) Laplace–Beltrami spectra as ‘Shape-DNA’of surfaces and solids. Comput Aided Des 38(4):342–366

    Article  Google Scholar 

  32. Sahillioğlu Y, Yemez Y (2010) 3d shape correspondence by isometry-driven greedy optimization. IEEE Conf Comput Vis Pattern Recognit. IEEE 453–458

  33. Sahillioǧlu Y, Yemez Y (2011) Coarse-to-fine combinatorial matching for dense isometric shape correspondence. Comput Graphics Forum 30(5):1461–1470. doi:10.1111/j.1467-8659.2011.02020.x

    Article  Google Scholar 

  34. Sahillioglu Y, Yemez Y (2012) Minimum-distortion isometric shape correspondence using EM algorithm. IEEE Trans Pattern Anal Mach Intell 34(11):2203–2215. doi:10.1109/TPAMI.2012.26

    Article  Google Scholar 

  35. Sahillioğlu Y, Yemez Y (2014) Partial 3-D correspondence from shape extremities. Comput Graphics Forum 33(6):63–76. doi:10.1111/cgf.12278

    Article  Google Scholar 

  36. Schwarz LA, Mkhitaryan A, Mateus D, Navab N (2012) Human skeleton tracking from depth data using geodesic distances and optical flow. Image Vis Comput 30(3):217–226. doi:10.1016/j.imavis.2011.12.001

    Article  Google Scholar 

  37. Shapira L, Shamir A, Cohen-Or D (2008) Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis Comput 24(4):249–259. doi:10.1007/s00371-007-0197-5

    Article  Google Scholar 

  38. Smeets D, Hermans J, Vandermeulen D, Suetens P (2012) Isometric deformation invariant 3D shape recognition. Pattern Recog 45(7):2817–2831. doi:10.1016/j.patcog.2012.01.020

    Article  Google Scholar 

  39. Sun J, Ovsjanikov M, Guibas LA (2009) Concise and provably informative multi‐scale signature based on heat diffusion. Comput Graphics Forum 5:1383–1392, Wiley Online Library

    Article  Google Scholar 

  40. Tagliasacchi A, Zhang H, Cohen-Or D (2009) Curve skeleton extraction from incomplete point cloud. ACM Trans Graph 3:71

    Google Scholar 

  41. Tam GK, Cheng ZQ, Lai YK, Langbein FC, Liu Y, Marshall D, Martin RR, Sun XF, Rosin PL (2013) Registration of 3D point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans Vis Comput Graph 19(7):1199–1217. doi:10.1109/TVCG.2012.310

    Article  Google Scholar 

  42. Vlasic D, Baran I, Matusik W, Popović J (2008) Articulated mesh animation from multi-view silhouettes. ACM Trans Graph 27(3):97

    Article  Google Scholar 

  43. Wang K, Wu Z, Xu P, Zhao J, Jia T, Shui W, Ali S, Zhou M (2014) Scale-invariant heat kernel mapping. Cyberworlds, Int Conf 114–121. doi:10.1109/CW.2014.24

  44. Wong S-K, Yang J-A, Ho T-C, Chen Y-C, Chuang J-H (2012) A skeleton-based approach for shape correspondence. Paper presented at the Proceedings of the 11th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, Singapore, Singapore

  45. Yan HB, Hu SM, Martin RR, Yang YL (2008) Shape deformation using a skeleton to drive simplex transformations. IEEE Trans Vis Comput Graph 14(3):693–706. doi:10.1109/Tvcg.2008.28

    Article  Google Scholar 

  46. Yang Y, Günther D, Wuhrer S, Brunton A, Ivrissimtzis I, Seidel H-P, Weinkauf T (2012) Correspondences of persistent feature points on near-isometric surfaces. In: Computer Vision–ECCV 2012. Workshops and Demonstrations. Springer 102–112

  47. Yianilos PN (1993) Data structures and algorithms for nearest neighbor search in general metric spaces. Paper presented at the Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, Austin, Texas, USA

  48. Zhang MQ, Li F, Wang XC, Wu ZK, Xin SQ, Lui LM, Shi L, Wang DF, He Y (2014) Automatic registration of vestibular systems with exact landmark correspondence. Graph Model 76:532–541. doi:10.1016/j.gmod.2014.04.010

    Article  Google Scholar 

  49. Zhang W, Shang L, Chan AB (2014) A robust likelihood function for 3D human pose tracking

  50. Zhang H, Sheffer A, Cohen-or D, Zhou Q, Kaick OV, Tagliasacchi A (2008) Deformation-driven shape correspondence. Comput Graphics Forum 27(5):1431–1439. doi:10.1111/j.1467-8659.2008.01283.x

    Article  Google Scholar 

  51. Zheng Q, Sharf A, Tagliasacchi A, Chen B, Zhang H, Sheffer A, Cohen-Or D (2010) Consensus skeleton for Non-rigid space-time registration. Comput Graphics Forum 29(2):635–644. doi:10.1111/j.1467-8659.2009.01633.x

    Article  Google Scholar 

Download references

Acknowledgments

The research is partially supported by National Natural Science Foundation of China (No.61170170 and 61170203) and the National Key Technology Research and Development Program of China (2012BAH33F04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongke Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Razzaq, A., Wu, Z. et al. Novel correspondence-based approach for consistent human skeleton extraction. Multimed Tools Appl 75, 11741–11762 (2016). https://doi.org/10.1007/s11042-015-2629-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2629-y

Keywords

Navigation