Skip to main content
Log in

Video object segmentation by integrating trajectories from points and regions

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We describe a novel video object segmentation system based on a conditional random field model with high-order term which is capable of capturing longer-range spatial and temporal grouping information. Our system is able to segment different moving objects effectively from complex background due to integrating the complementary properties of trajectories from points and regions. Although point and region trajectories have already been used in video object segmentation, their complementary properties have not been well investigated. In this paper, we propose an ingenious scheme to transfer the labels of sparse point trajectories to region trajectories. Especially, for region trajectories with few texture, this scheme can automatically predict their label probabilities by using a Gaussian mixture model of appearance and motion given the labels of point trajectories. Meanwhile, we design a reliability measurement for region trajectories based on shape consistency, which helps us to design robust high-order potentials for spatially overlapping region trajectories. Our region trajectories are extracted from hierarchical image over-segmentation, and hence they can capture meaningful regions over time. Additionally, our approach is a streaming process, in which object labels are propagated over a video. We validate the effectiveness of our approach on public challenging datasets, and show that our approach outperforms other competing methods

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Arbelaez P, Maire M, Fowlkes C, Malik J (2009) From contours to regions: an empirical evaluation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 2294–2301

  2. Brox T, Malik J (2010) Object segmentation by long term analysis of point trajectories. In: European conference on computer vision, pp 282–295

  3. Brox T, Malik J (2011) Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans Pattern Anal Mach Intell 33(3):500–513

    Article  Google Scholar 

  4. Brutzer S, Hoferlin B, Heidemann G (2011) Evaluation of background subtraction techniques for video surveillance. In: Proceedings of IEEE conference on computer vision and pattern recognition. IEEE, pp 1937–1944

  5. Budvytis I, Badrinarayanan V, Cipolla R (2011) Semi-supervised video segmentation using tree structured graphical models. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 2257–2264

  6. Cheriyadat A M, Radke R J (2009) Non-negative matrix factorization of partial track data for motion segmentation. In: Proceedings of IEEE international conference on computer vision, pp 865–872

  7. Deng Y, Manjunath BS (2001) Unsupervised segmentation of color-texture regions in images and video. IEEE Trans Pattern Anal Mach Intell 23(8):800–810

    Article  Google Scholar 

  8. Esche M, Glantz A, Krutz A, Sikora T (2012) Adaptive temporal trajectory filtering for video compression. IEEE Trans Circuits Syst Video Technol 22(5):659–670

    Article  Google Scholar 

  9. Fathi A, Balcan MF, Ren X, Rehg JM (2011) Combining self training and active learning for video segmentation. In: Proceedings of British machine vision conference, pp 78.1–78.11

  10. Felzenszwalb PF, Huttenlocher DF (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Article  Google Scholar 

  11. Fowlkes C, Belongie S, Chung F, Malik J (2004) Spectral grouping using the nystrom method. IEEE Trans Pattern Anal Mach Intell 26(2):214–225

    Article  Google Scholar 

  12. Fragkiadaki K, Zhang G, Shi J (2012) Video segmentation by tracing discontinuities in a trajectory embedding. In: Proceedings of IEEE conference on computer vision and pattern recognition. IEEE, pp 1846–1853

  13. Galasso F, Iwasaki M, Nobori K, Cipolla R (2011) Spatio-temporal clustering of probabilistic region trajectories. In: Proceedings of IEEE international conference on computer vision, pp 1738–1745

  14. Galasso F, Cipolla R, Schiele B (2013) Video segmentation with superpixels. In: Proceedings Asian conference on computer vision. Springer, pp 760–774

  15. Gorelick L, Blank M, Shechtman E, Irani M, Basri R (2007) Actions as space-time shapes. IEEE Trans Pattern Anal Mach Intell 29(12):2247–2253

    Article  Google Scholar 

  16. Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783

    Article  Google Scholar 

  17. Grundmann M, Kwatra V, Han M, Essa I (2010) Efficient hierarchical graph-based video segmentation. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 2141–2148

  18. Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850–863

    Article  Google Scholar 

  19. Huttenlocher DP, Noh JJ, Rucklidge WJ (1993) Tracking non-rigid objects in complex scenes. In: Proceedings of IEEE international conference on computer vision, pp 93–101

  20. Kohli P, Ladicky L, Torr PH (2009) Robust higher order potentials for enforcing label consistency. Int J Comput Vis 82(3):302–324

    Article  Google Scholar 

  21. Lee YJ, Kim J, Grauman K (2011) Key-segments for video object segmentation. In: Proc. IEEE international conference on computer vision, pp 1995–2002

  22. Lezama J, Alahari K, Sivic J, Laptev I (2011) Track to the future: spatio-temporal video segmentation with long-range motion cues. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 3369–3376

  23. Li H, Ngan KN (2008) Saliency model-based face segmentation and tracking in head-and-shoulder video sequences. J Vis Comun Image Represent 19(5):320–333

    Article  Google Scholar 

  24. Martin DR, Fowlkes CC, Malik J (2004) Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans Pattern Anal Mach Intell 26(5):530–549

    Article  Google Scholar 

  25. Mezaris V, Kompatsiaris I, Boulgouris N, Strintzis M (2004) Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval. IEEE Trans Circuits Syst Video Technol 14(5):606–621

    Article  Google Scholar 

  26. Nagaraja NS, Ochs P, Liu K, Brox T (2012) Hierarchy of localized random forests for video annotation. In: Pattern Recognition (Proc. DAGM). Springer, LNCS

  27. Nikolaos Anastasios DD (2013) Motion-based segmentation of objects using overlapping temporal windows. Image Vision Comput 31(9):593–602

    Article  Google Scholar 

  28. Ochs P, Brox T (2011) Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: Proceedings of 0IEEE international conference on computer vision, pp 1583–1590

  29. Ochs P, Brox T (2012) Higher order motion models and spectral clustering. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 614–621

  30. Panagiotakis C, Grinias I, Tziritas G (2011) Natural image segmentation based on tree equipartition, bayesian flooding and region merging. IEEE Trans Image Process 20(8):2276–2287

    Article  MathSciNet  Google Scholar 

  31. Paris S, Durand F (2007) A topological approach to hierarchical segmentation using mean shift. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1–8

  32. Sand P, Teller S (2008) Particle video: Long-range motion estimation using point trajectories. Int J Comput Vis 80(1):72–91

    Article  Google Scholar 

  33. Sheikh Y, Javed O, Kanade T (2009) Background subtraction for freely moving cameras. In: Proceedings of IEEE international conference on computer vision, pp 1219–1225

  34. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  35. Sundaram N, Brox T, Keutzer K (2010) Dense point trajectories by GPU-accelerated large displacement optical flow. In: Proceedings of European conference on computer vision. Springer, pp 438–451

  36. Sundberg P, Brox T, Maire M, Arbelaez P, Malik J (2011) Occlusion boundary detection and figure/ground assignment from optical flow. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 2233–2240

  37. Vazquez-Reina A, Avidan S, Pfister H, Miller E (2010) Multiple hypothesis video segmentation from superpixel flows. In: Proceedings of European conference on computer vision, pp 268–281

  38. Xu C, Corso JJ (2012) Evaluation of super-voxel methods for early video processing. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1202–1209

  39. Xu C, Xiong C, Corso JJ (2012) Streaming hierarchical video segmentation. In: Proceedings of European conference on computer vision, pp 626–639

  40. Zhang G, Yuan Z, Chen D, Liu Y, Zheng N (2012) Video object segmentation by clustering region trajectories. In: Proceedings of IAPR international conference on pattern recognition, pp 2598– 2601

Download references

Acknowledgments

This work was supported in part by the National Basic Research Program of China under Grant No. 2012CB316402 and the National Natural Science Foundation of China under Grant No. 91120006 and No. 61273252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yuan, Z., Liu, Y. et al. Video object segmentation by integrating trajectories from points and regions. Multimed Tools Appl 74, 9665–9696 (2015). https://doi.org/10.1007/s11042-014-2145-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2145-5

Keywords

Navigation