Skip to main content
Log in

Mixed architectures for H.264/AVC digital video transrating

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we investigate transrating architectures for H.264/AVC video streams. Basic architectures are presented with their strengths and weaknesses. None of the existing architectures provide an appropriate solution for H.264/AVC transrating with an optimal balance between visual quality and complexity. In order to find such an appropriate solution, we propose the use of mixed transrating architectures. These architectures combine different transrating techniques which are applied depending on the picture/macroblock type. The intra-predicted pictures are decoded and re-encoded, while open-loop transrating or transrating with compensation is applied to motion-compensated pictures. Performance results show that the mixed architecture which applies spatial compensation to motion-compensated pictures gives rate-distortion results which approach the cascade of decoder and re-encoder with a complexity only slightly higher than the open-loop transrater. Adding temporal compensation for motion-compensated pictures further improves the visual quality, albeit to a lower extent, at the expense of increased complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ahmad I, Wei X, Sun Y, Zhang Y-Q (2005) Video transcoding: an overview of various techniques and research issues. IEEE Trans Multimedia 7(5):793–804

    Article  Google Scholar 

  2. De Cock J, Notebaert S, Lambert P, De Schrijver D, Van de Walle R (2006) Requantization transcoding in pixel and frequency domain for intra 16 × 16 in H.264/AVC. In: Lecture notes in computer science, advanced concepts for intelligent vision systems, ACIVS

  3. De Cock J, Notebaert S, Van de Walle R (2007) Combined SNR and temporal scalability for H.264/AVC using requantization transcoding and hierarchical B pictures. In: Proceedings of the IEEE international conference on multimedia and expo (ICME), pp 448–451

  4. De Cock J, Notebaert S, Van de Walle R (2007) A novel hybrid requantization transcoding scheme for H.264/AVC. In: Proceedings of the IEEE international symposium on signal processing and its applications (ISSPA)

  5. Flierl M, Girod B (2003) Generalized B pictures and the draft H.264/AVC video-compression standard. IEEE Trans Circuits Syst Video Technol 13(7):587–597

    Article  Google Scholar 

  6. Fung K-T, Chan Y, Siu W (2002) New architecture for dynamic frame-skipping transcoder. IEEE Trans Image Process 11(8):886–900

    Article  Google Scholar 

  7. Horowitz M, Joch A, Kossentini F, Hallapuro A (2003) H.264/AVC baseline profile decoder complexity analysis. IEEE Trans Circuits Syst Video Technol 13(7):704–716

    Article  Google Scholar 

  8. ITU-T, ISO/IEC JTC 1 (2003) Advanced video coding for generic audiovisual services. ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC

  9. Jones GA, Defilippis JM, Hoffmann H, Williams EA (2006) Digital television station and network implementation. Proc IEEE 94(1):22–36

    Article  Google Scholar 

  10. Keesman G, Hellinghuizen R, Hoeksema F, Heideman G (1996) Transcoding of MPEG bitstreams. Signal Process Image Commun 8:481–500

    Article  Google Scholar 

  11. Lefol D, Bull D, Canagarajah N (2006) Performance evaluation of transcoding algorithms for H.264. IEEE Trans Consum Electron 52(1):215–222

    Article  Google Scholar 

  12. List P, Joch A, Lainema J, Bjøntegaard G, Karczewicz M (2003) Adaptive deblocking filter. IEEE Trans Circuits Syst Video Technol 13(7):614–619

    Article  Google Scholar 

  13. Marpe D, Wiegand T, Schwarz H (2003) Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans Circuits Syst Video Technol 13(7):620–636

    Article  Google Scholar 

  14. Notebaert S, De Cock J, De Wolf K, Van de Walle R (2006) Requantization transcoding of H.264/AVC bitstreams for intra 4 × 4 prediction modes. In: Lecture notes in computer science, advances in multimedia information processing, PCM

  15. Qian T, Sun J, Li D, Yang X, Wang J (2006) Transform domain transcoding from MPEG-2 to H.264 with interpolation drift-error compensation. IEEE Trans Circuits Syst Video Technol 16(4):523–534

    Article  Google Scholar 

  16. Qian T, Sun J, Li D, Yang X, Wang J (2006) Transform domain transcoding from MPEG-2 to H.264 with interpolation drift-error compensation. IEEE Trans Circuits Syst Video Technol 16(4):523–534

    Article  Google Scholar 

  17. Schwarz H, Marpe D, Wiegand T (2006) Analysis of hierarchical B pictures and MCTF. In: Proceedings of the IEEE international conference on multimedia and expo (ICME), pp 1929–1932

  18. Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans Circuits Syst Video Technol 17(9):1103–1120

    Article  Google Scholar 

  19. Shen B (2006) Optimal requantization-based rate adaptation for H.264. In: Proceedings of the IEEE international conference on multimedia and expo (ICME), pp 317–320

  20. Shen B (2007) Perfect requantization for video transcoding. Multimed Tools Appl 35(2):163–173

    Article  Google Scholar 

  21. Shen G, He Y, Cao W, Li S (2006) MPEG-2 to WMV transcoder with adaptive error compensation and dynamic switches. IEEE Trans Circuits Syst Video Technol 16(11):1460–1476

    Article  Google Scholar 

  22. Sun H, Kwok W, Zdepski JW (1996) Architectures for MPEG compressed bitstream scaling. IEEE Trans Circuits Syst Video Technol 6(2):191–199

    Article  Google Scholar 

  23. Tourapis AM, Wu F, Li S (2003) Direct mode coding for bi-predictive pictures in the JVT standard. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS), pp 700–703

  24. Vetro A, Christopoulos C, Sun H (2003) Video transcoding architectures and techniques: an overview. IEEE Signal Process Mag 20:18–29

    Article  Google Scholar 

  25. Wedi T, Musmann HG (2003) Motion- and aliasing-compensated prediction for hybrid video coding. IEEE Trans Circuits Syst Video Technol 13(7):577–586

    Article  Google Scholar 

  26. Wee S, Vasudev B (1997) Splicing MPEG video streams in the compressed domain. In: IEEE workshop on multimedia signal processing (MMSP)

  27. Werner O (1999) Requantization for transcoding of MPEG-2 intraframes. IEEE Trans Image Process 8(2):179–191

    Article  Google Scholar 

  28. Wiegand T, Schwarz H, Joch A, Kossentini F, Sullivan GJ (2003) Rate-constrained coder control and comparison of video coding standards. IEEE Trans Circuits Syst Video Technol 13(7):688–703

    Article  Google Scholar 

  29. Wiegand T, Sullivan GJ, Bjøntegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576

    Article  Google Scholar 

  30. Wu Y, Hirakawa S, Reimers UH, Whitaker J (2006) Overview of digital television development worldwide. Proc IEEE 94(1):8–21

    Article  Google Scholar 

  31. Xin J, Lin C-W, Sun M-T (2005) Digital video transcoding. Proc IEEE 93(1):84–97

    Article  Google Scholar 

  32. Yin P, Vetro A, Liu B, Sun H (2002) Drift compensation for reduced spatial resolution transcoding. IEEE Trans Circuits Syst Video Technol 12(11):1009–1020

    Article  Google Scholar 

  33. Zeng W, Lei S (2003) Efficient frequency domain selective scrambling of digital video. IEEE Trans Multimedia 5(1):118–129

    Article  Google Scholar 

Download references

Acknowledgements

The research activities that have been described in this paper were funded by Ghent University, the Interdisciplinary Institute for Broadband Technology (IBBT), the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT-Flanders), the Fund for Scientific Research-Flanders (FWO-Flanders), and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stijn Notebaert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Notebaert, S., De Cock, J., Beheydt, S. et al. Mixed architectures for H.264/AVC digital video transrating. Multimed Tools Appl 44, 39–64 (2009). https://doi.org/10.1007/s11042-009-0273-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-009-0273-0

Keywords

Navigation