Skip to main content
Log in

Morphological Characteristics of Chromium Carbides in HP40NbTi Refractory Alloys in Cast Condition and after High-Temperature Holds

  • Published:
Metal Science and Heat Treatment Aims and scope

Scanning electron microscopy, different methods of electron diffraction, x-ray spectrum microanalysis and x-ray diffraction analysis are used to study the microstructure and crystallography of eutectic chromium carbides in HP40NbTi alloys in as-cast condition and after endurance tests for 2 – 100 h at 1150°C. The morphology and the transformations of the carbides after the high-temperature endurance tests are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Garbiak, W. Jasinski, and B. Piekarski, “Materials for reformer furnace tubes, history of evolution,” Arch. Foundry Eng., 11(2), 47 – 52 (2001).

    Google Scholar 

  2. J. C. M. Farrar, “Group H heat-resistant stainless steels,” in: Guide to Low-Alloy Steels, Stainless Steels and Nickel-Base Alloys, CRS Press, Cambridge Eng., Woodhead Publ. Ltd, Boca Raton (2004), pp. 117 – 143 (DOI 10.1533/9781855739925).

  3. M. Blair, “Stainless steels: cast” in: K. H. J. Buschow, R. W. Cahn, M. C. Flemings (eds.), Encyclopedia of Materials: Science and Technology, Oxford (2001), pp. 8798 – 8802 (DOI 10.1016/B0-08-043152-6/01580-1).

  4. L. Bonaccorsi, E. Guglielmino, R. Pino, et al., “Damage analysis in Fe – Cr – Ni centrifugally cast alloy tubes for reforming furnaces,” Eng. Failure Anal., 36, 65 – 74 (2014).

    Article  Google Scholar 

  5. H. M. Tawancy, A. Ul-Hamid, A. I. Mohammed, and N. M. Abbas, “Effect of materials selection and design on the performance of an engineering product — an example from petrochemical industry,” Mater. Design, 28(2), 686 – 703 (2007) (DOI 10.1016/j.matdes.2005.07.003).

  6. L. H. De Almeida, A. F. Ribeiro, and I. L. May, “Microstructural characterization of modified 25Cr – 35Ni centrifugally cast steel furnace tubes,” Mater. Charact., 49(3), 219 – 229 (2003).

    Article  Google Scholar 

  7. E. A. Kenik, P. J. Maziasz, R. W. Swindeman, et al., “Structure and phase stability in cast modified-HP austenite after longterm aging,” Scr. Mater., 49(2), 117 – 122 (2003).

    Article  Google Scholar 

  8. G. F. Vander Voort, G. M. Lucas, and E. P. Manilova, “Metallography and microstructures of heat-resistant alloys,” in: G. F. Vander Voort (ed.), ASM Handbook, Vol. 9, Metallography and Microstructures, ASM Int., Materials Park, Ohio (2004), pp. 820 – 859.

  9. A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 1,” Metalloved. Term. Obrab. Met., No. 1(703), 3 – 8 (2014).

  10. A. I. Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi, et al., “Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 2,” Metalloved. Term. Obrab. Met., No. 3 (705), 12 – 19 (2014).

  11. A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2,” Metalloved. Term. Obrab. Met., No. 4(694), 42 – 47 (2013).

  12. A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi, et al., “Special features of structural changes in refractory alloy 45Kh26N33S2B2 at operating temperatures. Report 1. Cast condition,” Nauch.-Tekh. Vedom. SPbGPU, No. 142, 155 – 163 (2012).

  13. A. A. Kaya, P. Krauklis, and D. J. Yuong, “Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: I. Oxidation phenomena and propagation of a crack,” Mater. Charact., 49(1), 11 – 21 (2002).

    Article  Google Scholar 

  14. A. A. Kaya, “Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: II. Carburization and carbide transformations,” Mater. Charact., 49(1), 23 – 34 (2002).

    Article  Google Scholar 

  15. I. A. Sustaita-Torres, S. Haro-Rodrigues, M. P. Guerrero-Mata, et al., “Aging of cast 35Cr – 45Ni heat resistant alloy,” Mater. Chem. Phys., 133, 1018 – 1023 (2012).

    Article  Google Scholar 

  16. L. S. Monobe and C. G. Schõn, “Microstructural and fractographic investigation of a centrifugally cast 20Cr32Ni + Nb alloy tube in the ‘as cast’ and aged states,” J. Mater. Res. Technol., 2(2), 195 – 201 (2013).

    Article  Google Scholar 

  17. S. Borjali, S. R. Allahkaram, and H. Khosravi, “Effects of working temperature and carbon diffusion on the microstructure of high-pressure heat-resistant stainless steel tubes used in pyrolysis furnaces during service condition,” Mater. Design, 34, 65 – 73 (2012).

    Article  Google Scholar 

  18. W. Z. Wang, F. Z. Xuan, Z. D. Wang, and C. J. Liu, “Effect of overheating temperature on the microstructure and creep behavior of HP40Nb alloy,” Mater. Design, 32, 4010 – 4016 (2011).

    Article  Google Scholar 

  19. A. I Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi et al., “Transformation of the structure of refractory alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb under a long high-temperature hold,” Metalloved. Term. Obrab. Met., No. 10(700), 7 – 14 (2013).

  20. A. I. Rudskoy, G. P. Anastasiadi, S. Yu. Kondrat’ev et al., “Effect of the factor of the number of electron vacancies on the kinetics of formation, growth, and dissolution of phases under long high-temperature holds of refractory alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb,” Fiz. Met. Metalloved., 115(1), 3 – 13 (2014).

  21. A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi et al., “Special features of structural changes in refractory alloy 45Kh25N33S2B2 under operating temperatures. Report 2: Effect of high-temperature holding,” Nauch.-Tekh. Vedom. SPbGPU, No. 147-1, 217 – 228 (2012).

  22. A. I. Rudskoy, G. I. Anastasiadi, A. S. Oryshchenko et al., “Special features of structural changes in refractory alloy 45Kh25N33S2B2 under operating temperatures. Report 3: Mechanism and kinetics of phase transformations,” Nauch.-Tekh. Vedom. SPbGPU, No. 154-2, 143 – 150 (2012).

  23. K. G. Buchanan and M. V. Kral, “Crystallography and morphology of niobium carbide in as-cast HP-niobium reformer tubes,” Metall. Mater. Trans. A, 43A(6), 1760 – 1769 (2012) (DOI 10.1007/s11661-011-1025-0).

  24. K. G. Buchanan, M. V. Kral, and C. M. Bishop, “Crystallography and morphology of MC carbides in niobium-titanium modified as-cast HP alloys,” Metall. Mater. Trans. A, 45A(8), 3373 – 3385 (2014) (DOI 10.1007/s11661-014-2285-2).

  25. F. C. Nunes, L. H. De Almeida, J. Dille et al., “Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steel,” Mater. Charact., 58, 132 – 142 (2007).

    Article  Google Scholar 

  26. B. Piekarski, “Effect of Nb and Ti additions on microstructure and identification of precipitates in stabilized Ni – Cr cast austenitic steels,” Mater. Charact., 47, 181 – 186 (2001).

    Article  Google Scholar 

  27. Kaoru Yamamoto, Mitsuo Hashimoto, Nobuya Sasaguri, and Yasuhiro Matsubara, “Solidification of high chromium cast iron substituted by 25 to 70 mass. % Ni for Fe,” Mater. Trans. (Jpn. Foundry Eng. Soc.), 50(9), 2253 – 2258 (2009).

  28. Yu. N. Taran, “Structure of carbon-iron alloys,” in: M. L. Bernshtein and A. G. Rakhshtadt (eds.), Metal Science and Heat Treatment of Steel [in Russian], Metallurgiya, Moscow (1995), Vol. 2, Book 1, pp. 76 – 109.

  29. Tien-Fu Chen, Gyanendra Prasad Tiwari, Yoshiaki Iijima, and Kiyoshi Yamauchi, “Volume and grain boundary diffusion of chromium in Ni-base Ni – Cr – Fe alloys,” Mater. Trans. (Jpn. Foundry Eng. Soc.), 44(1), 40 – 46 (2003).

  30. A. C. S. Sabioni, A. M. Huntz, F. Silva, and F. Jomard, “Diffusion of iron in Cr2O3: polycrystals and thin films,” Mater. Sci. Eng. A, 392(1 – 2), 254 – 261 (2005).

  31. O. A. Bannykh and M. E. Drits (eds.), Phase Diagrams of Binary and Multicomponent Systems Based on Iron [in Russian], Metallurgiya, Moscow (1986), 440 p.

  32. T. Sourmail, “Precipitates in creep resistant austenitic stainless steels,” Mater. Sci. Technol., 17(1), 1 – 14 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Kondrat’ev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 22 – 29, January, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, S.Y., Anastasiadi, G.P., Petrov, S.N. et al. Morphological Characteristics of Chromium Carbides in HP40NbTi Refractory Alloys in Cast Condition and after High-Temperature Holds. Met Sci Heat Treat 58, 19–26 (2016). https://doi.org/10.1007/s11041-016-9958-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-016-9958-y

Key words

Navigation