Skip to main content
Log in

Structural Changes Caused by High-Temperature Holding of Powder Shape Memory Alloy 66% Fe – 14% Mn – 6% Si – 9% Cr – 5% Ni

  • Published:
Metal Science and Heat Treatment Aims and scope

Shape memory alloy Fe – 14Mn – 6Si – 9Cr – 5Ni (wt.%) obtained by cold pressing and sintering of a mixture of powder elements or of mechanically alloyed powder is studied. To compact the alloy additionally the specimens are subjected to hot rolling. Solution treatment of different duration (0.6 – 4.8 ksec) at 1473 K in low vacuum, nitrogen or argon is performed. The structure of the alloy after such treatments is studied by the methods of x-ray diffraction and optical and scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Moriya, H. Kimura, S. Ishizaki, et al., “Properties of Fe – Cr – Ni – Mn – Si (Co) shape memory alloys,” J. Phys. III, 1, 433 – 437 (1991).

    Google Scholar 

  2. T. Maki, “Ferrous shape memory alloys,” in: H. Otsuka and C. M. Wayman (eds.), Shape Memory Materials, Cambridge University Press (1998), pp. 117 – 132.

  3. D. Dunne, “Phase transformations in steels,” in: E. Pereloma and D. V. Edmonds (eds.), Diffusionless Transformations, High Strength Steels, Modeling and Advanced Analytical Techniques (2012), Vol. 2, pp. 83 – 125.

  4. L. Bracke, G. Mertens, J. Penning, et al., “Influence of phase transformations on the mechanical properties of high-strength austenitic Fe – Mn – Cr steel,” Metall. Mater. Trans. A, 37A, 307 – 317 (2006).

    Article  Google Scholar 

  5. B. Maji and K. Madangopal, “The effect of microstructure on the shape recovery of a Fe – Mn – Si – Cr – Ni stainless steel shape memory alloy,” Scr. Mater., 48(1), 71 – 77 (2003).

    Article  Google Scholar 

  6. A. Sato, K. Soma, and T. Mori, “Hardening due to pre-existing ε-martensite in an Fe – 30Mn – 1Si alloy single crystal,” Acta Metall., 30, 1901 – 1907 (1982).

    Article  Google Scholar 

  7. H. Berns and W. Theisen, “Ferrous materials,” Steel and Cast Iron, 190 – 198, 378 – 380, 397 – 399 (2008).

  8. L. G. Bujoreanu, S. Stanciu, B. Özkal et al, “Comparative study of the structures of Fe – Mn – Si – Cr – Ni shape memory alloys obtained by classical and by powder metallurgy,” in: 8th Eur. Symp. on Martensitic Transformations ESOMAT 2009 (2009), 05003, pp. 1 – 8.

  9. A. S. Jabur, J. T. Al-Haidary, and E. S. Al-Hasani, “Characterization of Ni-Ti shape memory alloys prepared by powder metallurgy,” J. Alloy Compd., 578, 136 – 142 (2013).

    Article  Google Scholar 

  10. Kisoo Shin, C. R. Wong, and S. H. Whang, “Fabrication and damping capacity of Cu – Zn – Al matrix composites processed by powder metallurgy route,” Mater. Sci. Eng. A, 165(1), 35 – 43 (1993).

    Article  Google Scholar 

  11. A. Ibarra, J. San Juan, E. H. Bocanegra, and M. L. Nóa, “Thermomechanical characterization of Cu – Al – Ni shape memory alloys elaborated by powder metallurgy,” Mater. Sci. Eng. A, 438 – 440, 782 – 786 (2006).

    Article  Google Scholar 

  12. P. Pricop, U. Söyler, R. I. Comăneci, et al., “Mechanical cycling effects at Fe – Mn – Si – Cr – Ni SMAs obtained by powder metallurgy,” Phys. Proc., 10, 125 – 131 (2010).

    Article  Google Scholar 

  13. P. Pricop, U. Söyler, N. Lohan, et al., “Mechanical alloying effects on the thermal behavior of a Fe – Mn – Si – Cr – Ni shape memory alloy under powder form,” J. Optoelectron. Adv. Mat., 5, 555 – 561 (2011).

    Google Scholar 

  14. P. Pricop, U. Söyler, N. Lohan, et al., “Thermal behavior of mechanically alloyed powders used for producing an Fe – Mn – Si – Cr – Ni shape memory alloy,” J. Mater. Eng. Perform., 21, 2407 – 2416 (2012).

    Article  Google Scholar 

  15. P. Pricop, U. Söyler, B. Özkal, et al., “Influence of mechanical alloying on the behavior of Fe – Mn – Si – Cr – Ni shape memory alloys made by powder metallurgy,” Mater. Sci. Forum, 738 – 739, 237 – 241 (2013).

    Article  Google Scholar 

  16. I. P. Spiridon, B. Pricop, M. G. Suru, et al., “The influence of heat treatment atmosphere and maintaining period on the homogeneity degree of a Fe – Mn – Si – Cr – Ni shape memory alloy obtained through powder metallurgy,” J. Optoelectron. Adv. Mat., 15(7 – 8), 730 – 733 (2013).

    Google Scholar 

  17. A. U. Söyler, B. Özkal, and L. G. Bujoreanu, “Improved shape memory characteristics of Fe – 14Mn – 6Si – 9Cr – 5Ni alloy via mechanical alloying,” J. Mater. Eng. Perform., 23(7), 2357 – 2361 (2014).

    Article  Google Scholar 

  18. U. Söyler, B. Özkal, and L. G. Bujoreanu, “Investigation of mechanical alloying process parameters on the Fe – Mn – Si based system,” in: Suppl. Proc., Vol. 1, Materials Processing and Energy Materials TMS (The Minerals, Metals & Materials Society) (2011), pp. 577 – 583.

  19. U. Söyler, B. Özkal, and L. G. Bujoreanu, “Sintering densification and microstructural characterization of mechanical alloyed Fe – Mn – Si based powder metal system,” in: Suppl. Proc., Vol. 1, General Paper Selection TMS (The Minerals, Metals & Materials Society) (2010), pp. 785 – 792.

  20. L. G. Bujoreanu, V. Dia, S. Stanciu, et al., “Study of the tensile constrained recovery behavior of a Fe – Mn – Si shape memory alloy,” Eur. Phys. J. Spec. Topics, 158, 15 – 20 (2008).

    Article  Google Scholar 

  21. P. Pricop, B. Özkal, U. Söyler, et al., “Influence of mechanically alloyed fraction and hot rolling temperature in the last pass on the structure of Fe – 14Mn – 6Si – 9Cr – 5Ni (mass.%) shape memory alloys processed by powder metallurgy,” J. Optoelectron. Adv. Mat., 8(3 – 4), 247 – 250 (2014).

    Google Scholar 

  22. S. Kajiwara, “Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys,” Mater. Sci. Eng. A, 273 – 275, 67 – 88 (1999).

    Article  Google Scholar 

  23. K. M. Mostafa, J. De Baerdemaeker, N. Van Caenegem, et al., “Influence of carbon on the microstructure of a Fe – Mn – Si – Cr – Ni alloy,” J. Mater. Eng. Perform., 18, 575 – 581 (2009).

    Article  Google Scholar 

  24. B. C. Maji, K. Madangopal, V. Hiwarkar, et al., “Development of texture and microstructure during cold rolling and annealing of a Fe-based shape memory alloy,” J. Mater. Eng. Perform., 18, 588 – 593 (2009).

    Article  Google Scholar 

  25. B. C. Maji, K. Madangopal, and V. V. Rama Rao, “The microstructure of an Fe – Mn – Si – Cr – Ni stainless steel shape memory alloy,” Metall. Mater. Trans., 34A, 1029 – 1042 (2003).

    Article  Google Scholar 

  26. T. Kirindi, E. Güler, and M. Dikici, “Effects of homogenization time on the both martensitic transformations and mechanical properties of Fe – Mn – Si – Cr – Ni shape memory alloy,” J. Alloy. Compd., 433, 202 – 206 (2007).

    Article  Google Scholar 

  27. T. Kirindi and M. Dikici, “Microstructural analysis of thermally induced and deformation induced martensitic transformation in Fe – 12.5 wt.% Mn – 5.5 wt.% Si – 9 wt.% Cr – 3.5 wt.% Ni alloy,” J. Alloy. Compd., 407, 157 – 162 (206).

  28. J. L. Putaux and J. P. Chevalier, “HREM study of self-accommodated thermal ε-martensite in an Fe – Mn – Si – Cr – Ni shape memory alloy,” Acta Mater., 44(4), 1701 – 1716 (1996).

    Article  Google Scholar 

  29. A. Ariapour, I. Yakubtsov, and D. D. Perovic, “Effect of nitrogen on shape memory effect of a Fe – Mn-based alloy,” Mater. Sci. Eng. A., 262, 39 – 49 (1999).

    Article  Google Scholar 

  30. T. Sawaguchi, L. G. Bujoreanu, T. Kikuchi, et al., “Effects of Nb and C in solution and in NbC form on the transformation-related internal friction of Fe – 17Mn (mass %) alloys,” ISIJ Int., 48(1), 99 – 106 (2008).

    Article  Google Scholar 

  31. K. Verbeken, N. Van Caenegem, and D. Raabe, “Identification of ε martensite in a Fe-based shape memory alloy by means of EBSD,” Micron, 40, 151 – 156 (2009).

    Article  Google Scholar 

  32. I.-P. Spiridon, N.-M. Lohan, M.-G. Suru, et al., “Study of free-recovery in a Fe – Mn – Si – Cr shape memory alloy,” Metal. Sci. Heat Treat., 57(9 – 10), 548 – 552 (2015).

    Google Scholar 

Download references

The work has been supported by UEFISCDI within project PN-II-ID-PCE-2012-4-0033 (Contract No. 13/2013).

Bogdan Pricop acknowledges the KULeuven for his six-month research stay at the Department of Metallurgy and Materials Engineering.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 35 – 40, September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pricop, B., Özkal, B., Söyler, U. et al. Structural Changes Caused by High-Temperature Holding of Powder Shape Memory Alloy 66% Fe – 14% Mn – 6% Si – 9% Cr – 5% Ni. Met Sci Heat Treat 57, 553–558 (2016). https://doi.org/10.1007/s11041-016-9921-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-016-9921-y

Key words

Navigation